
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commentaries/</td>
<td></td>
</tr>
<tr>
<td>Revision point of Specifications for Highway Bridges and</td>
<td>Yoshitomi KIMURA, Takashi</td>
</tr>
<tr>
<td>Revision summary of Part3 Concrete Bridges</td>
<td>TAMAKOSHI, Yoshihiko</td>
</tr>
<tr>
<td></td>
<td>NISHIGAKI and Yoshinori WADA</td>
</tr>
<tr>
<td>Technical reports/</td>
<td></td>
</tr>
<tr>
<td>Repair Performance of Re-injecting of LiNO₂-containing Solution and</td>
<td>Tomoshige KAMOTANI, Takahiro</td>
</tr>
<tr>
<td>Grout into Incomplete Grouting Area and Its Example of Application to</td>
<td>EBINA, Toshiyuki AOYAMA and</td>
</tr>
<tr>
<td>an Actual PC Bridge</td>
<td>Hidenori MORIKAWA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction records/</td>
<td></td>
</tr>
<tr>
<td>Structural Design and Construction of a High-rise Building using</td>
<td>Shuichi MATSUMOTO, Kazumasa</td>
</tr>
<tr>
<td>Concrete Filled Tubular Column with Fc150N/mm² High-strength</td>
<td>GOTO, Shusuke KUROIWA and</td>
</tr>
<tr>
<td>Concrete and 780N/mm² class High-strength Steel</td>
<td>Yoichi TAKASE</td>
</tr>
</tbody>
</table>
In order to assure safety and durability of road bridges for a long term, structural redundancy and effectiveness of maintenance need to be considered in initial design and construction stages.

Revision of specification of highway bridges in 2001 aimed at facilitation of introduction of newly acquired idea regarding to design rationalization and sophistication of design. The revision included clarification of performance required by performance based specification and change in format of the provisions.

New revision includes attention to maintenance from initial design stage and reflects new knowledge which has been acquired from investigations, researches, experiences since the previous revision and major disasters recently experienced in Japan. The revision of the Part3 Concrete Bridges of the Specifications includes introduction of requirements which corresponds to adoption of newly developed structure and aims at improving durability.

Major revisions are as follows:
(1) Inclusion of new provisions which states fundamental policy of design should include effectiveness of maintenance in addition to easiness of maintenance
(2) New provision that states design of bridges should include maintenance methods planned to be carried out during the service. Equipments necessary for the maintenance also should be coordinated in the design of bridges.
(3) New provision that states structural design should consider possibility of disastrous failure such as collapse due to damage of a part or parts of bridges
(4) New provision that states records of study, design, construction, quality control and so on which are used for maintenance carried out during service should be maintained
(5) Revision of provision regarding design seismic waves and rapid restoration after earthquakes, which reflects results of analysis of actual damages highway bridges have suffered recently from disasters such as the Great Tohoku Earthquake

Major revisions the Part3 Concrete Bridges of the Specifications are as follows:
(1) Inclusion of new provisions that states general requirement regarding safety and durability of connection between different materials in hybrid structure
(2) New stand-alone provision of structure using external cables to enhance provisions regarding external cable arranged with large eccentricity
(3) Enhancement of provisions to improve durability from construction viewpoint
(4) Revision of connection between girders and deck slab to rationalize design of composite bridges
(5) Inclusion of provisions regarding application, allowable stress, bending radius and so on of high yield reinforcement bar such as SD390 and SD490 which was added to the general part of the specifications

*1 Chief Researcher, CAESAR, Public Works Research Institute (PWRI), JCI Member
*2 Head, Bridge and Structures Division, National Institute for Land and Infrastructure Management, MLIT
*3 General Manager, Technical Department, Japan Prestressed Concrete Contractors Association (JPCCA), JCI Member
*4 Senior Researcher, CAESAR, Public Works Research Institute (PWRI), JCI Member
INTRODUCTION

In some PC Bridges, incomplete groutings, like poor procedures, poor mixtures and so on, formed the voids in the post-tensioning duct. The PC tendons suffered corrosion damages due to chloride ions invaded into the voids in the area spraying antifreezing agent in winter season. The authors proposed re-injecting of LiNO₂-containing solution and grout as a countermeasure against the voids and corrosion of PC tendons. In this paper, The experiment with concrete specimens to verify repair performance of this new method and its example of application to an actual PC bridge are introduced.

FLOW OF NEW METHOD

1. Injection of solution containing LiNO₂ into incomplete groutings area in sheath
2. Holding of solution containing LiNO₂
3. Removing solution containing LiNO₂
4. Injection of grout containing LiNO₂

In the process of No.2, re-passivation of PC tendons occurs by the penetration of NO₂⁻ into the rust.

REPAIR PERFORMANCE OF NEW METHOD

Fig.1 shows the polarization resistance of new method using LiNO₂ and existing method (re-injection of normal grout) in the experiment using rebar corroded by solution containing Cl⁻. The corrosion rate of new method is smaller than existing method. Furthermore it is confirmed the amount of macrocell corrosion of new method is smaller than existing method.

APPLICATION TO AN ACTUAL PC BRIDGE

The authors applied new method to an actual PC bridge shown in Photo.1. Two PC cables corroded by antifreezing agent like Photo.2. Re-passivation of the cable is confirmed by measure of potential shown in Fig.2. It takes about 10 minutes with 40% LiNO₂ solutions. After the procedure, re-injection of grout containing LiNO₂ is executed and it is confirmed that the void is grouted very near to anchorage.
Ultra high-strength concrete filled tubular (CFT) columns have been developed and applied for high-rise building of 200m height, which is under construction in Otemachi town, a major business district of Japan. This CFT column is constituted of high-strength concrete with specified standard strength Fc150N/mm² and high-strength steel material with tensile strength of 780N/mm². In lower stories of this building, generous continuous space between 3,600 m² forest created on artificial ground at the first floor and the concourse of the Metro was required as an underground plaza which attains station strengthening of subway 5 adjoining stations. This developed CFT columns enable the construction of large atrium with few columns in lower stories where high loads are applied.

The paper is intended first to provide the outline of development of the ultra-high-strength CFT column and second to provide the structural design and construction of the high-rise building using the CFT columns.

Ultra high-strength concrete filled tubular (CFT) columns have been developed and applied for high-rise building of 200m height, which is under construction in Otemachi town, a major business district of Japan. This CFT column is constituted of high-strength concrete with specified standard strength Fc150N/mm² and high-strength steel material with tensile strength of 780N/mm². In lower stories of this building, generous continuous space between 3,600 m² forest created on artificial ground at the first floor and the concourse of the Metro was required as an underground plaza which attains station strengthening of subway 5 adjoining stations. This developed CFT columns enable the construction of large atrium with few columns in lower stories where high loads are applied.

The paper is intended first to provide the outline of development of the ultra-high-strength CFT column and second to provide the structural design and construction of the high-rise building using the CFT columns.