複数開口を有する RC 造耐震壁の非線形 FEM 解析

NON-LINEAR FEM ANALYSIS FOR RC SHEAR WALLS WITH MULTI-OPENINGS

櫻井真人^{*}, 松井智哉^{**}, 倉本 洋^{***} Masato SAKURAI, Tomoya MATSUI and Hiroshi KURAMOTO

Non-linear FEM analyses for RC shear walls with multi openings tested by the authors were performed to simulate the experimental results such as hysteresis loops, failure process and stress distribution of reinforcing bars in this paper. The accuracy of the analytical modeling and constitutive law of materials used were also examined through the analyses. Good agreements between test and analytical results were found until the maximum capacity. It was indentified that the failure mode and shear strengths of the RC shear walls with multi openings were significantly affected by the difference of the number and layout of openings.

Keywords: RC shear walls with multi openings, Static loading test, Seismic performance, Shear strength, FEM analysis 複数開口耐震壁,静的載荷実験,耐震性能, せん断強度, FEM 解析

1. はじめに

鉄筋コンクリート(RC)造建築物における主要な耐震要素の1つ である耐震壁は、建築計画等の制約から壁板内に窓や扉などの開口を 有する、いわゆる有開口耐震壁となる場合が多い。日本建築学会の「鉄 筋コンクリート構造計算規準・同解説¹⁾(以下、RC規準と略記)」で は、有開口耐震壁のせん断強度を無開口耐震壁のせん断強度に開口部 の面積の比率で与えられる「開口周比」による低減率を乗じることで 評価している。この手法は実用的かつ簡便であり、日本建築防災協会 の「既存鉄筋コンクリート造建築物の耐震診断基準・同解説」²⁾(以 下、耐震診断基準と略記)にも採用されている。しかしながら、開口 の形状、位置および開口数が異なる場合でも開口周比が一定であれば 同等のせん断強度が算定され、開口の形状等が構造特性に及ぼす影響 が反映されにくい点に問題がある。また、既往の実験や実際の地震に よる有開口耐震壁の破壊状況³⁾を見ると、開口の形状等によって破壊 モードが異なることが認められる。このことが有開口耐震壁の耐震性 能の定量的評価を困難にしている要因の1つと考えられる。

一方、上記のような問題点の改善を目的とした有開口耐震壁の耐力 評価法に関する研究報告も少なくない。徳広・小野⁴らは、壁板内に 形成される圧縮応力場に基づいた耐力算定法を提案している。壁谷 澤・木村⁵らはマクロモデルを用いた終局強度理論式を適用し、有開 口耐震壁の終局強度を各袖壁の終局強度の和として算定する手法を 示している。佐藤・東浦ら⁶は壁板が耐力に寄与する領域から算出さ れる有効スパンを用いてせん断耐力を算定する手法を示している。ま た、加藤ら⁷は塑性理論による有開口耐震壁の終局強度と変形能の評 価法を示しており、実験例が非常に少ない連層有開口耐震壁について も検討している。これらの算定法の一部は、「鉄筋コンクリート造建 物の靭性保証型耐震設計指針・同解説」⁸⁾(以下、靭性保証指針と略 記)や耐震診断基準に採用されているが、複数開口のもの、開口周比 が0.4を超えるものおよび2層以上の連層となるものなどに対する検 証例はまだ少なく、一般的な設計法への適用には検討の余地が残され ている状況にある。また、建築物の設計が性能評価型の体系に移行し つつある中、より定量的な性能評価手法の確立が必要であるといえる。

このような背景から筆者らは、有開口耐震壁の耐震性能評価法の構 築に向けて基礎的な研究を行ってきた。これまでに連層有開口耐震壁 の静的載荷実験⁹を実施し、開口の形状、位置および個数によって最 終破壊に至るまでの破壊メカニズムおよび復元力特性について把握 し、有開口耐震壁が多様な破壊モードとなることを示した。また、等 価開口周比による耐力算定では実験値を過小評価する傾向が認めら れた。このことから今後、耐震評価精度を改善させるためには応力伝 達機構に基づいた評価法の開発が必要であることを再認識した。

そこで、有開口耐震壁の各部における詳細な応力状態の解明や、開 ロ形状が耐震壁内部における応力伝達機構に及ぼす影響を明らかに することを目的として、FEM 解析やパラメトリック解析の実施を計 画している。そのためには、まず FEM 解析によって先述の実験にお ける試験体の荷重-変形関係および破壊モードを再現できる最適な 解析手法を確立することが必要である。有開口耐震壁の FEM 解析に ついては、水野・田才・楠らの研究¹⁰、松下・前田・長田らの研究¹¹、井元・高見・小林らの研究¹²などがあるが、解析例が非常に少な く、地震時を想定した繰り返しせん断力を受ける有開口耐震壁の挙動 のシミュレーション手法を検討することは、本研究を進める上での重

** 豊橋技術科学大学工学部建設工学系 助教 博士 (工学)

^{*} 豊橋技術科学大学大学院工学研究科 大学院生

^{***} 大阪大学大学院工学研究科地球総合工学専攻 教授 博士 (工学)

Graduate School of Eng., Toyohashi University of Technology Assistant Prof., Department of Architecture & Civil Engineering, TUT, Dr. Eng. Prof., Div. of Global Architecture, Graduate School of Eng., Osaka Univ., Dr. Eng.

要項目の1つである。

本論文では先述の実験⁹⁰を対象に FEM 解析を実施し、履歴 特性、破壊状況および鉄筋の応力分布から解析のモデル化お よび材料構成則の妥当性について検討する。また、耐震壁の 内部応力状態およびせん断応力の負担状況など、実験結果か らは得られない応力伝達メカニズムを明らかにする。

2. 実験概要

本章では3章で示す FEM 解析の対象とする有開口耐震壁の構造実 験⁹の概要を述べる。

2.1 試験体

図1に試験体概要を、表1に部材断面詳細をそれぞれ示す。試験体 は6層程度のRC造建築物における連層耐震壁の下層部を想定した実 大の約1/3スケールのもの3体である。実験変数には開口数と開口位 置を選択した。開口数が各層1個の試験体1体(試験体WO1)およ び各層2個で開口位置が異なる試験体2体(試験体WO2およびWO3) を計画した。耐震壁は壁内法高さが800mm、内法長さが1600mmお よび壁厚が80mmであり、側柱断面は200mm×200mm および2 層が 200mm×200mm である。また、破壊モードはせん断破壊型とした。各 試験体 とも等価開口周比をほぼ0.4 とし、既往の設計式¹⁾によるせ ん断強度算定値が同等となるよう計画した。

表2および表3に鉄筋およびコンクリートの材料特性を示す。コン クリートの設計基準強度Fcは27N/mm²とした。

2.2 載荷方法

実験は図2に示す載荷装置を用いて行った。反力壁に取り付けたオ イルジャッキにより試験体に正負繰り返し水平力を負荷した。この際、 水平力は上部鉄骨載荷梁の中央部に設けられたピン支承部に作用さ せ、当該載荷梁と試験体上部スタブをPC 鋼棒で堅結することによっ て壁板および側柱に伝達させた。さらに、上下の載荷梁に取り付けた

2 台の鉛直オイルジャッキ(各 2000kN)により、作用軸力 442kN(柱軸力比 N/bD σ_B で 0.2 に相当)を試験体に作用させたと同時に、せん 断スパン比 1.38 となるように各載荷ステップにおいて次式を満足す るよう負荷モーメント *M* を作用させた。

$$M = Q(h - a) \tag{1}$$

$$N_e = \frac{N_c}{2} - \frac{Q}{l_j} \left(h - a\right) \tag{2}$$

$$N_w = \frac{N_c}{2} + \frac{Q}{l_j} \left(h - a\right) \tag{3}$$

ここで、M:付加モーメント(kN・mm)、 N_e :東側ジャッキ軸力(kN)、 N_w :西側ジャッキ軸力(kN)、 N_c :一定軸力(=442kN)、Q: せん断力(kN)、 l_j :ジャッキ間距離(mm)、 h_w :想定加力高さ(mm)、およびa:実際の加力高さ(mm)である。

また、試験体頂部の水平変位 δ を計測高さ H (=2000mm) で除した 部材角 R= δ /H による変位制御としている。載荷プログラムは図 3 に 従った。計測変位は上部スタブおよび側柱での水平変位、側柱を 5 分割した軸方向変位、壁内の梁および壁板の部分変位である。鉄筋の ひずみは柱主筋、帯筋、壁のせん断補強筋および梁主筋の主要な位置 に貼付したひずみゲージにより測定した。

2.3 実験結果

図4 に全試験体の R=1/133rad.の載荷サイクル終了時におけるひび 割れ損傷状況を、図5 に各試験体のせん断力-変形角関係をそれぞれ に示す。

各試験体とも開口縁部において初期ひび割れが発生した後、1層柱 脚部における曲げひび割れおよび壁板のせん断ひび割れが確認され た。その後、変位振幅の増加に伴って当該ひび割れの拡幅・伸展が認 められた。

図4 ひび割れ損傷状況 (R:	=1/133rad.
-----------------	------------

衣	部材断面詳細	
	18	

-	(半世.000)	1/8	2/B			
	B×D	200 × 200				
++	主筋	12-D13(pg=3.8%)				
1±	帯筋	2-D6@60(p _w =0.53%)	2-D6@50(p _w =0.64%)			
	副帯筋	2-D6@120(p _w =0.27%)	-			
	B×D	150 × 200	200×500 (上部スタブ内300埋込)			
※ <u>主筋</u> 帯筋		4-D10(pg=0.54%)				
		2-D6@100(p _w =0.42%)				
	壁厚	80				
居辛	縦筋	D6@100(p _s =0.4%:千鳥配筋)				
-	横筋					
	開口補強筋	D10(縦,横,斜め)				

表2 鉄筋の材料特性					
	鉄筋	降伏点	ヤング係数 ^{*1}	引張強度	
種別	使用部位	(N/mm ²)	(kN/mm ²)	(N/mm ²)	
D6(SD295A)	壁,柱,梁補強筋	336	211	565	
D10(SD295A)	梁主筋,開口補強筋	327	153	439	
D13(SD390)	柱主筋	422	173	562	

表 3	コンクリートの材料特性			
コンクリート		WO1	WO2	

σ _B	1層		32.9(38)* ²	34.7(49)	34.9(44)
(N/mm ²)	2層		29.7(29)	29.5(40)	28.6(35)
*1 公称断面積	を用いて算定	*2 ⊐1	ックリートの材料特	性の()は材齢日	を示す
	表 4	実験値	および耐力算	拿定値	

	実	検値			
工 封 合 封 莅		耐震診断基準		小野·徳広提案式	
	正戦的	戦19 員戦19	曲げ終局強度Q _{mu}	せん断強度Q _{s1}	Q _{s2}
WO1	542	-543	618 (0.87)	233 (1.74)	522 (1.04)
WO2	473	-469	618 (0.77)	240 (1.52)	372 (1.25)
WO3	555	-552	618 (0.90)	241 (1.78)	471 (1.18)
*1 コンクリート強度は1層壁部の値を用いて耐力算定を行った。 単位:(kN) *2()内は実験値/算定値を示す。					

試験体 WO1 では R=-1/133rad.で最大耐力-543kN を記録した。また、 R=1/133rad.のサイクルで2層東側袖壁のせん断ひび割れの拡幅およ び2層西側袖壁の圧壊の兆候が確認された。その後、R=1/100rad.のサ イクルでは、2 層袖壁の圧壊が顕著となった。R=1/67rad.のサイクル では、2層側柱柱頭のせん断ひび割れが増加し、2層袖壁の損傷の進 行とともに1層袖壁でも圧壊の兆候が確認された。最終的に

R=1/33rad.のサイクルで2層側柱がせん断破壊した。

試験体 WO2 では R=1/133rad.にて最大耐力 473kN を記録し、2 層中 央壁板で圧壊の兆候および 2 階梁の曲げひび割れの拡幅が確認され た。R=1/100rad.のサイクルで各層の中央壁板がせん断破壊した。続い て R=1/67rad.のサイクルで東西袖壁が圧壊に至り、2 階梁の西側端部 で曲げひび割れが大きく拡幅した。その後、R=1/20rad.まで柱は破壊 に至らず、柱のみでせん断力を負担している状態となった。

試験体 WO3 では載荷サイクルの進行に伴い、壁板のせん断ひび割

Drift Angle ($\times 10^{-3}$ rad.) 図5 せん断力-変形角関係

れが1層に比べて2層のほうが顕著となった。R=1/133rad.のサイクル における変形ピークに達する前に最大耐力 555kN を記録した後、急 激に耐力が低下した。このとき2層壁板においてせん断ひび割れに沿 ってコンクリートの剥落および2層側柱柱頭におけるせん断ひび割 れを確認した。その後 R=1/100rad.のサイクルで 2 層壁板が圧壊した 後、R=1/67rad.のサイクルで2層側柱のせん断破壊が生じた。

以上のように、各試験体の破壊形式はせん断破壊型であったが、開 口位置および開口数の違いによって破壊経過および最大耐力に差異 が認められた。

各試験体の耐力計算結果を表4に示す。終局曲げ強度Q_{mu}の算定は 文献13)に示されている式(4)によった。また、終局せん断強度Q_{s1}(式 (5))は耐震診断基準²に基づいて無開口耐震壁の終局せん断強度Q_{su}

(式(7)) に等価開口周比η (式(9)) による低減率 γ (式(8)) を乗じて 算定した。なお、複数開口を設けた試験体では開口面積の総和を用い て算定した。さらに、同表には偏在開口の影響を考慮できる小野・徳 広による提案式⁴による終局せん断強度 Q_{s2} (式(6)) も併せて示して いる。 Q_{s2} は、富井・江崎らのスリップ耐力式 Q_u (式(10)) ¹⁴ に応力 圧縮場の面積に応じた低減率 γ_u (式(11)) ⁴ を乗じて算定されるもの である。

$$Q_{mu} = (a_t \cdot \sigma_y \cdot l_w + 0.5a_w \cdot \sigma_{wy} \cdot l_w + 0.5N \cdot l_w) / h_w$$
(4)

$$Q_{s1} = \gamma \cdot Q_{su} \tag{5}$$

$$Q_{s2} = \gamma_u \cdot Q_u \tag{6}$$

$$Q_{su} = \left[\frac{0.053 p_{te}^{0.23} \cdot (F_c + 18)}{M/(Q \cdot D) + 0.12} + 0.85 \sqrt{\sigma_{wh} \cdot p_{wh}} + 0.1\sigma_0\right] \cdot t_e \cdot j$$
(7)

$$\gamma = 1 - \eta$$

$$\eta = \max\left\{\sqrt{\frac{\sum h_i \cdot l_i}{h \cdot l_w}}, \frac{\sum l_i}{l_w}\right\}$$
(9)

 $Q_u = (0.75\sqrt{F_c} + 340P_s) \cdot t \cdot l \tag{10}$

$$\gamma_u = \sqrt{\frac{\sum A_v}{hl}} \tag{11}$$

ここで、 a_t : 引張側柱の主筋全断面積 (mm²)、 σ_t : 引張側柱の主筋 降伏強度 (N/mm²)、 a_w : 耐震壁の壁縦筋断面積 (mm²)、 σ_{wy} : 耐震壁 の壁縦降伏強度 (N/mm²)、N: 耐震壁の軸方向力 (N)、 l_w : 耐震壁の 両側中心間距離 (mm)、 h_w : 想定加力高さ (mm)、 p_{te} : 等価引張筋比 (%)、l: 壁の全長 (mm)、 B_e : 等価壁厚 (mm)、 p_{se} : 等価壁横筋比、 σ_{wh} : 壁横筋降伏強度 (N/mm²)、 σ_{wh} : 軸方向応力度 (N/mm²)、 j_e : 応力中心間距離 (mm)、 $M/(Q \cdot l)$: せん断スパン比、 h_i :開口高さ (mm)、 l_i :開口幅 (mm)、h: 階高 (mm)、t: 壁厚 (mm)、 P_s : 壁板せん断 補強筋比、 A_e : 有開口壁における応力圧縮場面積 (mm²)、および F_c : コンクリートの圧縮強度 (N/mm²) である。各記号の詳細に関しては参 考文献を参照されたい。

せん断強度計算値は、耐震診断基準式および小野・徳広式ともに各 試験体の実験値を過小評価する結果となっている。耐震診断基準式で はせん断強度式に下限式(式(7))を採用していることもあって、計 算値に対する実験値の比率が1.52から1.78となっており、予測精度 は十分とは言い難い。また、当然のことながら全ての試験体において 計算値が一定となるため、開口位置および個数の違いによる実験値の 差異を捉えることができない。一方、小野・徳広式では、せん断強度 式のスリップ耐力式と整合性がとれるよう低減率を定めていること もあって、計算値に対する実験値の比率が1.04から1.25となってお り、概ね良好な対応を示している。また、試験体 WO2のせん断耐力 算定値は、圧縮応力場が小さくなるため、試験体 WO1 および WO3 のものと比べて小さくなっており、実験結果の傾向とも合致している。

3. 非線形 FEM 解析概要

2 章で示した有開口耐震壁実験を対象に非線形 FEM 解析を実施す る。なお、解析には市販のコンクリート構造非線形 FEM 解析ソフト 「FINAL¹⁵」を用いた。

図6に試験体WO1を例として要素分割図を示す。解析は2次元解 析とし、平面応力場を仮定した。コンクリートは4節点四辺形要素で 定義し、帯筋および副帯筋は埋め込み鉄筋として要素内に層状に置換 した。主筋はトラス要素にて線材として置換した。また、柱および梁 主筋についてはコンクリートからの抜け出しを考慮するため、コンク リート要素とトラス要素の節点をそれぞれ別に定義し、接合要素を挿 入することで鉄筋の抜け出しをモデル化した。なお、鉄筋とコンクリ ートの付着応力度-すべり関係は Elmorsi らの提案モデルを修正した 手法¹⁶によりモデル化した(図7参照)。最大付着応力は靱性指針¹⁷⁾ により算定し、最大付着応力時のすべりは 1.0mm と仮定した。

上下スタブは四辺形要素でモデル化し、主筋および補強筋を要素内 に層状に置換した。下スタブ底面における節点にて鉛直および水平の 自由度を拘束することで完全固定とした。鉄筋およびコンクリートの 材料特性は表2、表3および表5の値を用いた。コンクリートの弾性 係数および圧縮強度時のひずみは文献18)によった。

本解析では実験と同様にせん断スパン比 1.38 とするために、試験 体上スタブ上端から実験時における想定加力高さまで、仮想スタブを 弾性体で定義し、この仮想スタブ上端にて強制変位を与えた。載荷は、 仮想スタブ上端に一定軸力 442kN を等分布荷重で与えた後、図5に 示すスタブ上端の節点①に強制変位を与えた。また解析では実験と同 位置となる節点②の変位にて制御し、不釣合い力の収束計算が不安定 となった時点で解析を終了した。

3.2 材料構成則

(8)

コンクリートは等価一軸ひずみに基づく直交異方性体とし、ひび割 れは要素内に一様に分布し、多方向のひび割れが考慮できる非直交分

散ひび割れモデル¹⁹⁾により表現した。圧縮側のコンクリートの応力 -ひずみ関係には、修正 Ahmad 式²⁰⁾を用いた(図8参照)。コンクリ -トの二軸応力下の破壊条件は Kupfer らの提案²¹⁾に従った。

なお、ひび割れ発生後は圧縮特性の劣化を考慮し強度と強度時のひ ずみを低減した。低減係数はコンクリートの一軸圧縮強度と作用圧縮 応力の関数で与えた²²⁾。ひび割れ発生後の tension stiffening 特性(軟 化域包絡線)はコンクリートの一軸圧縮強度、鉄筋比、ひび割れ方向 の圧縮剛性低下率の関数として定義した²⁴⁾。

図9にコンクリートの繰り返し応力下における履歴モデルを示す。 除荷・再載荷曲線は、引張側、圧縮側共に、2次曲線で表現した²⁵⁾。

ひび割れ後のせん断伝達特性は、ひび割れ方向のせん断応カーせん断 ひずみ関係で表現し、包絡線はコンクリートの一軸圧縮強度、鉄筋量、 ひび割れ直交ひずみおよびひび割れ方向のせん断ひずみの関数で与 えられるものとした²²⁾。

鉄筋は図 10 に示す Ciampi らの修正 Menegotto-Pinto モデル²⁶⁾を採 用し、降伏後の履歴ループを表現した。

表5 コンクリートの材料特性

以上の条件で解析を実施したところ、図 11 の履歴特性に示すよう に剛性が実験より大きくなる結果となった。また、耐力低下が実験と 比べ早い段階でみられた。

解析結果の剛性結果が高くなった理由として、試験体の養生期間中 における空気乾燥によるコンクリートの収縮の影響や、試験体設置過 程で試験体に生じたいわゆる初期ひびわれによって実験時に試験体 の剛性が低下していることが原因と考えられる。文献 23)では、養 生期間中のコンクリートの乾燥収縮の影響を引張強度において考慮 することで FEM 解析の剛性が低下し、実験結果との対応が改善され ることが報告されている。そこで本解析でも文献 23)と同様に、コ ンクリートの引張強度を表 5 に示す計算値に対して梁および側柱で は0.5 倍、および壁厚が薄く乾燥収縮の影響が周辺部材より大きいと 考えられる壁板では 0.25 倍と低減させた。また、コンクリートの弾 性係数を算定値の約0.5 倍と修正することでコンクリート材料自体の 剛性も低下させた。

一方、耐力低下が実験と比べ早い段階でみられた理由としては、壁 板のせん断ひび割れに沿った位置のコンクリート要素において、実験 時よりも早期に圧縮応力の軟化が生じていると考えられる。そこで、 圧縮強度時のひずみを表5に示す計算値に対応する値の約2倍となる 4500µとし、コンクリートの応力-ひずみ関係における強度上昇域を 拡張させた。これによりコンクリート要素がより大きなひずみにおい ても応力を負担できるようにした。なお、コンクリートの圧縮強度時 のひずみおよび弾性係数の設定手法に関してはさらなる検討の余地 がある。

4. 解析結果と実験結果との比較

解析より得られた履歴特性、各部変形性状および鉄筋応力状態から 実験結果の再現性を確認し、有開口耐震壁のモデル化および選択した 材料構成則の妥当性を検証する。

4.1 履歴特性

図12に実験と解析における履歴特性の比較を示す。履歴特性に関 して、各試験体とも全体的におよそ最大耐力付近までは良い対応を示 している。また、剛性についてもわずかに解析のほうが低い傾向がみ られるが総じて良い対応を示しており、本解析では実験の最大耐力や 変形能を高い精度で再現できているといえる。一方、最大耐力後の履 歴曲線は実験値との対応が悪くなっており、特に試験体 WO3 では負 載荷側の再現性が悪くなっている。また、いずれの試験体においても R=1/67rad.からは不釣合い力の収束計算が不安定となったため、解析 は R=1/100rad.までで終了している。最大耐力後のコンクリートの圧 壊による耐力低下を、解析上で表現するのは困難であるが、変形を最 大耐力までと限定した場合、解析における履歴曲線の実験値との対応 精度はかなり良好であるといえる。

4.2 ひび割れ状況

開口位置を示している。

図13に解析におけるR=1/133rad.におけるひび割れ損傷状況を示す。 解析においては、全体的に初期ひび割れの発生が実験時より早い傾向 がみられたが、これは養生期間中におけるコンクリートの乾燥収縮の 考慮のため、コンクリートの引張強度を低減していることが影響して いる。一方で、図3の実験時の破壊状況と比べ、試験体 WO1におけ る2層東側柱柱頭から1層西側柱脚部の斜め45度方向のひび割れや、 試験体 WO2の2層中央壁板から1層西側柱脚部への斜め方向のひび 割れ、試験体 WO1および WO2の西側袖壁における縦方向へのひび 割れ、試験体 WO1および WO2の西側袖壁における縦方向へのひび 割れ、各試験体における2層側柱の柱頭におけるせん断ひび割れ方向 など、ひび割れ角度はおおよそ一致しているといえる。また、最大耐 力時におけるひび割れ損傷状況との対応は良く、試験体 WO1におけ る2層東西袖壁のひび割れ損傷が著しい状況や試験体 WO2の中央壁 板の損傷状況、試験体 WO3 での3階梁部分と壁板の境界でせん断破 壊が生じる様子など、解析によって各試験体の損傷状況を捉えている。

図14および図15に壁脚部における軸方向の変形分布および縦筋の 応力分布の比較を示す。実験における軸方向変形は試験体脚部に取り 付けた変位計から、応力は鉄筋の履歴特性をバイリニアと仮定し、ひ ずみゲージ測定値からそれぞれ計算した。図16には変位計およびひ ずみゲージの測定位置を示す。なお、図14および図15の網掛け部は

耐震壁脚部変形および応力分布ともに、実験値と解析値とは良い対応を示した。特に各試験体の袖壁および壁板において、それぞれ西側が圧縮側に、東側が引張側に変形する挙動や,個々の壁が独立に回転 変形を生じている傾向、開口下部では開口西側に比べて開口東側における引張応力が小さくなる傾向が確認できる。このことから、開口の位置の違いにより、個々の壁が独立に回転変形を生じている傾向や、 それにより個々の壁の脚部でそれぞれ負担するモーメントに違いがみられる傾向が解析においても認められる。

4.4 横補強筋の応力分布

図18に正載荷第1サイクル時の壁板における横方向鉄筋の応力の 比較を示す。ここで実験値は図17に示す位置のひずみゲージより求 めたものであり、解析値は同位置における鉄筋要素の平均応力である。 横補強筋は各試験体ともに最大耐力時の変形角 R=1/133rad.までにほ ぼ降伏しており、壁板では降伏応力に達してせん断力に抵抗している ことが確認できる。解析値は実験値に対して降伏するまで対応が不十 分なところもみられるが、解析では壁筋を要素内に層状置換し定義し ており鉄筋のすべりを考慮していないことから、鉄筋が負担すべき応 力がコンクリートに伝達されていること、実験値ではひび割れ箇所に

よって鉄筋の応力状態が異なることなどが考えられる。しかしながら、 最大耐力時には実験値と同様に降伏応力を発揮している点は一致し ている。

以上のことから、繰り返し載荷を考慮した非線形 FEM 解析結果は、

図19 コンクリートの最小主応力分布図(最大耐力時)

最大耐力へ至るまでの履歴特性や、変形性能、応力分布、破壊性状に 関して、高い再現性を有することが確認された。

5. 内部応力状態の検証

4章において、FEM 解析によって有開口耐震壁の挙動を概ね模擬で

きることを確認できた。そこで本章では、FEM 解析結果に基づいて 耐震壁の内部応力状態およびせん断応力の負担状況など、耐震壁内部 の応力伝達メカニズムについて考察する。

5.1 最小主応力分布

図 19 に各試験体の最大耐力時におけるコンクリート要素の最小主 応力分布(圧縮応力分布)を示す。

各試験体とも袖壁付柱、独立柱および中央壁板においてそれぞれ斜 め方向の圧縮ストラットが形成されている。これらは図 4 および図 13 の破壊性状におけるひび割れの伸展方向と概ね一致している。試 験体 WO1 のストラットは袖壁においてほぼ斜め 45 度方向に形成さ れている。試験体 WO1 に比べ袖壁部の全長が短い試験体 WO2 では 形成されるストラットはより鋭角なものとなり、ストラットの作用幅 は狭くなっている。また、袖壁における応力度は試験体 WO1 よりも 小さい。袖壁のない試験体 WO3 では中央壁板において他の2体と比 べ作用幅が広く、緩い角度のストラットが形成されている。 このように、開口位置の違いによって形成されるストラットの角度 および幅が異なり、応力伝達メカニズムに影響を及ぼしているものと 推察される。また、有開口耐震壁におけるせん断力の伝達経路は、耐 震壁上部から1層圧縮側柱の柱脚部付近へ形成されるスラットによ るものと耐震壁上部から壁脚部へ形成されるストラットによるもの に大別できる。前者では複数のストラットが1層圧縮側柱の柱脚部付 近に集中するのに対して、後者では壁板脚部に一様に応力が伝達され る傾向が認められる。

5.2 各壁板の負担せん断力

開口の位置や個数および形状が応力伝達に与える影響を定量的に 把握するため、最大耐力時の1層における各部位の負担せん断力を図 20に示す。なお、せん断力は図17に示される高さ位置(点線)にお けるコンクリートの各要素に生じるせん断力の和としている。

試験体 WO1 では、せん断力負担割合が西側柱で 35%、西側袖壁で 33%となり、圧縮側となる西側の部材におけるせん断力の負担が約7 割を占めている。試験体 WO2 は西側袖壁で 16%、東側袖壁で 14% となり、特に各袖壁で試験体 WO1 と比べ負担せん断力が小さくなっ ている。試験体 WO3 では、西側柱が最大で 23%、中央壁板で 72%、 東側柱で5%と、ストラットの幅が最も大きくなる中央壁板でせん断 力の大部分を負担する傾向が認められる。図 19 の最小主応力分布と 比較すると、試験体 WO1 と比べ袖壁の全長が短くなる試験体 WO2 ではストラットの角度および幅の変化に対応して負担せん断力が減 少しているのが確認できる。一方、中央壁板については試験体 WO2 に比べて、ストラットの角度が緩やかで幅の大きい試験体 WO3 のほ うが負担割合は大きくなっている。これらをまとめると、壁板長によ って形成されるストラットの角度および幅が異なり、負担せん断力が 変化する傾向が伺える。また、側柱についてみると、圧縮側柱では付 随する袖壁が短くなるにつれ側柱の剛性も減少するため、側柱の負担 せん断力が減少していることが確認できる。一方、引張側柱では逆に 付随する袖壁の壁長が短くなると、袖壁自体が負担できるせん断力が 減少するため袖壁で負担できなかったせん断力のいくらかを側柱が 負担している。ところが袖壁がない場合はストラットの影響がほとん どないため、負担せん断力は減少しているといえる。

5.1 節での考察と同様に、以上のことからも有開口耐震壁では形成 されるストラットの角度および幅が開口の配置によって異なり、各部 位の負担せん断力に差が生じ、結果として各試験体のせん断耐力に影 響を及ぼすといえる。

6. まとめ

本論文では複数開口を有する RC 造耐震壁の非線形 FEM 解析を行 い、履歴特性および各部変形性状等に関して実験結果と比較すること によりモデル化の妥当性を検証した。さらに、FEM 解析結果に基づ いて当該耐震壁の応力伝達メカニズムを検討した。

本研究で得た知見を以下に要約する。

- (1)有開口耐震壁の履歴特性、ひび割れ損傷状況および壁筋の応力推 移状況は、最大耐力時までに限定すると、本論で示した非線形 FEM 解析によって再現可能である。
- (2)また、本解析は有開口耐震壁における袖壁付柱、壁板および独立 柱の各部位が独立に回転変形を生じ、モーメントを伝達するとい う現象を良好に再現できている。

- (3) 有開口耐震壁におけるせん断力の伝達経路は、耐震壁上部から1 層圧縮側柱の柱脚部付近へ形成されるスラットと耐震壁上部から壁脚部へ形成されるストラットに大別できる。
- (4) 有開口耐震壁では開口の配置によって形成される圧縮ストラットの角度および幅が異なるため、袖壁付き柱、壁板および独立柱の負担せん断力に差が生じ、終局せん断耐力に影響を及ぼす。

参考文献

- 日本建築学会:鉄筋コンクリート造構造計算規準・同解説、pp.273-376、 1999.11.
- 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震診断基準・同解 説、2001年改訂版、pp.221-226、2001
- 3) 建設省建築研究所、平成七年度兵庫県南部地震被害調查報告書、1996.3.
- 4) 小野正行、徳広育夫:鉄筋コンクリートの開口の影響による耐力低減率の 提案、日本建築学会構造系論文報告集、第 435 号、pp.119-129、1992.5.
- 5) 木村匠、壁谷澤寿海:鉄筋コンクリート耐震壁の開口による終局強度低減 率、コンクリート工学年次論文報告集、11-2、pp.585-590、1989.6.
- 6) 佐藤和英、東浦章、久保哲夫、渡辺丹:高配筋耐震壁の復元力特性に及ぼ す開口の影響、日本建築学会構造系論文報告集、第418号、pp.39-47、1990.12.
- 7)加藤大介、杉下陽一、小倉宏一、大谷裕美:鉄筋コンクリート造連層有開 ロ耐震壁の変形性能の評価法、日本建築学会構造系論文報告集、第530号、 pp.107-113、2000.4.
- 8) 日本建築学会:鉄筋コンクリート構造物の靱性保証型耐震設計指針・同解 説、pp.208-240、1999
- 9) 鈴木健太、秋田知芳、松井智哉、倉本洋:複数開口を有する RC 造有開口 耐震壁の静的載荷実験、コンクリート工学年次論文集、第29巻、第3号、 pp.325-330、2007.7.
- 10) 水野生、田才晃、楠浩一:新設壁開口を有する壁式鉄筋コンクリート構造の弾塑性挙動に関する解析的研究、コンクリート工学年次論文集、第 29 巻、第 3 号、pp.343-348、2007.7.
- 11) 松下貴広、戸田敬司、前田匡樹、長田正至: RC 造開口耐震壁のせん断終 局強度に関する非線形有限要素解析、日本建築学会大会学術講演梗概集(中 国)、C-2(構造 IV)、pp.385-386、1999.9.
- 12) 井元勝慶、高見信嗣、小林譲、渡部征男、加藤朝郎、大場政章:原子力発 電所建物のRC有開口耐震壁の耐力評価 その2.FEM解析と耐力評価、日 本建築学会大会学術講演梗概集(近畿)、B-2、構造 II、pp.1131-1132、1996.9.
- 13) 国土交通建築研究所:2001年版 建築物構造関係技術基準解説書、工学図 書株式会社、2001.3
- 14) 富井政英、江崎文也:鉄筋コンクリート耐震壁の水平耐力に関する研究、 日本建築学会大会学術講演梗概集(九州)、pp1587-1588、1881.9.
- 15) 伊藤忠テクノソリューションズ(株): FINAL/V99 HELP
- 16) Naganuma, K., Yonezawa, K., Kurimoto, O. and Eto, H. : Simulation of nonlinear dynamic response of reinforced concrete scaled model using three-dimensional finite element method, 13th World Conference on Earthquake Engineering, Paper No.586, 2004.8.
- 日本建築学会:鉄筋コンクリート造建物の靭性保証型設計指針・同解説、 pp.175-177、1999
- 18)雨宮篤、野口博:超高強度鉄筋コンクリート部材の有限要素解析プログラムの開発(その1)、日本建築学会大会学術講演梗概集、C(構造II)、 pp.639-640、1990.10.
- 19) 長沼一洋、栗本修、江戸宏彰:鉄筋コンクリート壁体の FEM による正負 繰り返し及び動的解析、日本建築学会構造系論文集、第544号、pp.125-132、 2001.6.
- 20) 長沼一洋:三軸圧縮のコンクリートの応力~ひずみ関係、日本建築学会構造 系論文集、第474号、pp.163-170、1995.8.
- Kupfer, H. B., Gerstle, K. H. :Behavior of Concrete under Biaxial Stress, Journal of the Engineering Mechanics Division, Vol.99, No.EM4, pp.853-866, 1973.8.
- 22) 長沼一洋:鉄筋コンクリート壁状構造物の非線形解析手法に関する研究 (その1)、日本建築学会構造系論文報告集、第421号、pp.39-48、1991.3.
- 23) 井元勝慶、米澤健次、加藤朝郎、川里健: 1/4PCCVの耐圧限界挙動に関す るラウンドロビン解析、コンクリート工学、Vol.41、No.1、pp.153-157、2003.1.
- 24) 長沼一洋、山口恒雄: 面内せん断応力下におけるテンションスティフニン グ特性のモデル化、日本建築学会大会学術講演梗概集、構造Ⅱ、 pp.649-650,1990.10.
- 25) 長沼一洋、大久保雅章:繰り返し応力下における鉄筋コンクリート板の解 析モデル、日本建築学会構造系論文集、第 536 号、pp.135-142、2000.10.
- 26) Ciampi, V et al.:Analytical Model for Concrete Anchorages of Reinforcing Bars Under Generalized Excitations, Report No. UCB/EERC-82/23, Univ. of California, Berkeley, 1982.11.