Cracking due to restrained shrinkage of massive concrete structures

Results of the CEOS.fr experiments

Jean-Michel Torrenti – IFSTTAR

On behalf of the CEOS.fr project
Building in Komaba campus!
Context of the project
• A 4 years national research project
• Involving 50 partners (building owners, construction firms, eng. offices, cement companies, research centers)

• Scientific Topics
 – Cracking under monotonic loading
 – Early-age concrete, thermo-hydro-mechanical effects
 – Cyclic loading

• Scientific know-how
 – Modeling (material, structure)
 – Experimental approach and monitoring
 – Engineering practices
Restrained shrinkage – CEOS experiments

• Cf. Buffo-Lacarrière et al., EJECE, 2015
 http://dx.doi.org/10.1080/19648189.2015.1072587
• And see https://cheops.necs.fr/ all the results available!
REINFORCEMENT OF THE 3 TESTED BEAMS

<table>
<thead>
<tr>
<th></th>
<th>RG8</th>
<th>RG9</th>
<th>RG10</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of longitudinal</td>
<td>2%</td>
<td>0.56%</td>
<td>2%</td>
</tr>
<tr>
<td>reinforcement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cover</td>
<td>30 mm (50 mm for</td>
<td>30 mm (50 mm for</td>
<td>50 mm (70 mm for</td>
</tr>
<tr>
<td></td>
<td>longitudinal rebar)</td>
<td>longitudinal rebar)</td>
<td>longitudinal rebar)</td>
</tr>
</tbody>
</table>
INSTRUMENTATION

- Vibrating wires
- Temperature sensors
- Internal long-base optical-fiber
- Displacement sensors
- Strain gauges
TEMPERATURE EVOLUTION – RG8 TEST

T (°C)

formwork and isolation removed

Text

Time from casting (h)
STRAINS FROM OPTICAL FIBERS – RG8 TEST
Total force in longitudinal reinforcements versus time (RG8 specimen)
Stresses in the reinforcement—RG8 test

- Before cracking, the reinforcement is under compression (to balance autogenous shrinkage of concrete).

- After cracking, near the crack, the reinforcement is under tension. Far from the crack, it is still under compression.
Just before cracking, the mean tensile stress in concrete = 1.9 MPa
To compare with a tensile strength of 4.1 MPa!
Several possible causes:
• The effect of dead weight;
• The existence of a temperature gradient;
• A probabilistic scale effect [Rossi, 94] [Sellier, 14];
• A coupling between creep and damage [Briffaut, 11], [Torrenti, 11];
• The effect of temperature history on the strength;
• The possible influence of the great quantity of sensors in the central section.
The non-homogeneous stress profile because of the dead weight that induced a stress of +5MPa in the low steel corresponding to +0.7MPa in the low concrete part.
Evolution of temperature difference between core and upper face (green curve) and between core and lower face (red curve) in RG8 test
Probabilistic Scale Effect

Strength

\[f_{ctm}^{Veq} = f_{ctm}^{Vref} \left(\frac{V_{ref}}{V_{eq}} \right)^{1/k} \]

\[f_{ctm}^{Veq} = 4 \times (310^{-3}/0.5)^{1/11} = 2.5 \text{ MPa}. \]
COUPLING BETWEEN CREEP AND DAMAGE

[Rusch, 1960]
Effect of temperature on the strength

[Daloia, 97]
Guidelines for the Control of Cracking - THM

- Minimal reinforcement of thick concrete elements (Chap 6)
 - Early age
 - Long term behaviour (drying)

- Combining effects of imposed deformations and external loadings (Chap 9)
 - Structures with water or air tightness requirements
 - Structures with sustainability requirements
GUIDELINES FOR THE CONTROL OF CRACKING - THM

- Minimal reinforcement of thick elements (Chap 6)
 - Early age
 - Around 3 days after concreting

<table>
<thead>
<tr>
<th>Concrete area in tension A_c</th>
<th>Stress profile</th>
<th>Minimum reinforcement and value of h_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>When limited surface cracking of the concrete results from the temperature difference between the core and the surface, the area of the concrete in tension is given by $A_c = 0,20 \cdot h \cdot 1,0 , \text{m}^2$ with a tensile stress distribution profile in the form of a double triangle</td>
<td>Heating or formwork removal</td>
<td>$A_{s_{\text{min}}} = \frac{0,5 \cdot 0,2h \cdot 1 \cdot f_{ctm,\text{scale}}}{f_{yk}}$</td>
</tr>
</tbody>
</table>

$f_{ctm,\text{scale}}$ is calculated for a layer thickness of h_t at maximum stress of $h_t = 0,2 \, h / 3$
Guidelines for the Control of Cracking - THM

- **Minimal reinforcement of thick elements (Chap 6)**
 - Early age
 - Around 10 to 30 days after concreting

<table>
<thead>
<tr>
<th>Concrete area in tension A_c</th>
<th>Stress profile</th>
<th>Minimum reinforcement and value of h_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the cracking results from the overall cooling of the element or is due to drying while under restraint, the area of the concrete in tension is given by $A_c = 0.5 \times 1.0 \text{ m}^2$ with a quasi-uniform tensile stress distribution profile</td>
<td>Cooling while under end restraint, but no edge restraint</td>
<td>$A_{s_{\text{min}}} = \frac{k \cdot 0.5h \cdot 1 \cdot f_{\text{ctm, scale}}}{f_{yk}}$</td>
</tr>
</tbody>
</table>

$f_{\text{ctm, scale}}$ is calculated for a layer thickness of h_t at maximum stress of: $h_t = 0.6 \times \text{h}$
• Minimal reinforcement of thick elements (Chap 6)
 – Daily temperature cycle (long term)

<table>
<thead>
<tr>
<th>Concrete area in tension A_c</th>
<th>Stress profile</th>
<th>Minimum reinforcement and value of h_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>When the cracking is due to daily temperature cycle, the thickness h_t is equal to 0,30 m and the area of the concrete in tension is given by $A_c = 0,30 \cdot h \cdot 1,0 \text{ m}^2$ with a tensile stress distribution profile in the form of a triangle</td>
<td>[Diagram of daily temperature cycle] $0,30 \text{ m}$</td>
<td>$A_{s\text{min}} = \frac{0,50 \cdot 0,30 \cdot 1 \cdot f_{ctm,\text{scale}}}{f_{yk}}$</td>
</tr>
</tbody>
</table>

$f_{ctm,\text{scale}}$ is calculated for a layer thickness of h_t at maximum stress of $h_t = 0,3/3 = 0,1 \text{ m}$
• Minimal reinforcement of thick elements (Chap 6)
 – Scale effect
COMBINING EFFECTS OF IMPOSED DEFORMATIONS AND EXTERNAL LOADINGS

• Proposal for the next Eurocode – annex D Guidance to restrict early age cracking (actually discussed)

• Three design states should be verified:
 – At temperature-equilibrium between the recently cast concrete and the restraining structure
 – At commissioning of the structure
 – During the design service life

• If particular demands are related to tightness, durability or appearance, cumulative impact of early age effects, load effects and later imposed deformations must be considered in the crack control verification.
• Otherwise, the crack control corresponding to these states can be verified separately.
Thank you for your attention
ご清聴ありがとうございます。