第2章 FEM温度解析

2-1 解析対象(CPひび割れ幅法)

マスコンクリートの温度応力解析プログラム(JCMAC2)の解析例(CPひび割れ幅法)と して図-2.1に示すように、岩盤上にコンクリートスラブが打設され、さらに壁が打設された時 のコンクリートのひび割れ幅を求める。なお、この壁は左右対称とし、右半分のみ解析する。 温度解析は、2次元FEM(4節点アイソパラメトリック要素)で行う。

図-2.1 解析対象構造物(奥行き方向 15,000mm)

2-2 解析条件と物性値

解析対象の壁状構造物は、東京都に打設されるものとする。コンクリートスラブは、平成13 年11月1日に打設され、壁部分は、1週間後の11月8日に打設されたものとする。なお、解 析は、12月20日まで行う。使用されたコンクリートは、普通ポルトランドセメントを用いた 普通コンクリートで、単位セメント量は、300kg/m³、打設時の練り上がり温度は、20℃であ る。温度解析に用いた熱特性値を表-2.1に示す。

物性値	岩盤	コンクリート
初期温度	15°C	20°C
比熱	$1.3 ext{ kJ/kg}^{\circ}\text{C}$	1.1 kJ/kg°C
密度	2600 kg/m^3	2300 kg/m^3
熱伝導率	2.3 W/m°C	2.8 W/m°C

表-2.1 温度解析の熱特性値

図-2.2 温度解析要素分割図

2-3 温度解析の流れ

(1) プログラムの起動

温度応力解析プログラムを起動すると、画面上に図-2.3 が表示される。データファイルが保存されている場合は、そのファイル名を入力し、保存されていない場合(新規入力)は、ファイル名を入力する。

図-2.3 プログラム起動画面

(2)メッシュ作成

まず始めに「メッシュ作成」を選び、温度解析のための有限要素(FEM)メッシュを作成 する。メッシュの作成は、メッシュジェネレータにより、自動的に行われる。

🗊 温度応	「力解析プログラム」				
ファイル	FEM温度解析	FEM応力解析	CPM応力解析	解析結果	ヘルプ
	メッシュ作成 初期温度・温度 打設リフト 材料特性値 解析ステップ 外気温 熱伝達境界 断熱温度上昇・ 温度解析デーク	1回定境界 量の計算 201保存			
	温度解析				

図-2.4 メッシュ作成画面

(3)矩形領域数の入力

メッシュ自動作成のため、メッシュを作成する矩形領域の数を入力する。

🛋 矩形領域の数	
ヘルプ 終了	
矩形領域のメッシュを作成します。 矩形領域の数を入力して下さい この図では矩形領域 の数は3です	
O K Cancel	

図-2.5 矩形数の入力

(4) 矩形領域の各頂点の座標入力

矩形領域の各頂点の座標を mm 単位で入力する。入力はブロック単位で行う。

■,コーナー座標の入力 ヘルプ				<u>_ 0 ×</u>							
矩形領域のコーナーの座標を入力してください。 座標はmm単位で入力します											
(空标はmm半12 C人)します。											
D C											
		×座標	Y座標								
A B	B	4000	0								
		4000	1500								
			1300								
		1									
	ок		Can	cel							

図-2.6 矩形領域のコーナー座標の入力

(5)メッシュ分割

矩形領域が画面上に描画されるので、矩形領域内で**マウスの右ボタン**をクリックし、要素分 割数等を入力する。

💐 X99	ュ分割を行います。	マウスを任意のブロック上に移動し			🛋 メッシュ分書	を行い	はす。	マウスを任意	のブロック上に移動し		
メッシュ1	乍成 ヘルプ 終	7			メッシュ作成	へルラ	9 終	7			
			1814.52 356	68.11						4181.5	3323.62
					54 5 38 50 8 5	5 <mark>-39</mark> 5					
					35	36	37				
					32	33	34				
	3				424 29	3-4	4 4 31				
					38-3	9—4 27)—4 28				
					34 <u>-3</u> 3	24	25	, 	·a		
		<u>,</u>			18	19	20	21	22		
		2			13	14	15	16	17		
					7	8	9	10	11	12	
					1	2	3	4	5	6	

図-2.7 メッシュ分割

(6) 初期温度と温度固定境界の入力

節点をマウスで選択し、初期温度と固定境界の有無を入力する。

温度の	む力解析プログラム					📑 初期	温度·温度	固定境界の設定	Ē			-
ァイル	FEM温度解析	FEM応力解析	CPM応力解析	解析結果	ヘルプ	番号表	示 ヘルプ	終了				
	メッシュ作成								a 如期温度·温度因常	白油思小設定		
	ガ展が画度/画版	1回定规称								E-969 POJEXAE		
	材料特性值								初期温度(°C)	: 15		
	解析ステップ 外気温									,		
	熱伝達境界								温度固定境界	e yes	O NO	
	断熱温度上昇 温度和45-5	量の計算										
	/血)反静的 チーク	20月末1子							ОК		Cancel	1
	温度解析	_										
和加加	県度・温度固定 道思の	静定				xI						
号表示	そ ヘルプ 終了	/ax//E										
Г												
-					1							
			図-2.8	初期	温度、注	温度固定地	境界(の入力				

(7)リフトデータの入力

対象となるリフトをマウスで選択し、リフトデータを入力する。

🛜 温度原	も力解析プログラム					😂 打設	リフトの	設定			_
ファイル	FEM温度解析	FEM応力解析	CPM応力解析	解析結果	ヘルプ	番号表	示 へ	ルブ 糸	終了		
	メッシュ作成										
	初期温度・温度	固定境界									
	115支リノト 未常思想事項に依										
	解析ステップ										
	外気温										
	熱伝達境界										
	断熱温度上昇 泪 庇 邪 毛二	量の計算									
	「血」反時的リテーク	×0J1*1+									
	温度解析								_		
									_		

図-2.9 リフトデータの入力

(7-a)リフト番号の入力

まず始めに、リフト番号を入力する。リフト番号は、0から順番に付ける。地盤や岩盤、既 設コンクリートなど、非発熱体のリフト番号は0を入力する。

🛋 打設リフトの設定を行います。	<u>- 🗆 ×</u>									
リフト番号(打設順)と打設日を入力してください。										
既設コンクリート、地盤、岩盤など非発熱体の リフト番号は0を入力してください。										
リフト番号: 0 1 2 3 4 5 6 7 • 非発熱体										
OK Cancel										

図-2.10 リフト番号の入力

(7-b)打設日の入力

カレンダーからマウスで日付を選択し、リフト打設日を入力する。

👌 温月	卽応力解	近プログ:	54					
ファイル	FEN	温度解	新 F	EM応力解析	F CP M応力解析	解析結果	ヘルブ	
	打設け	トの設定	2					
đ	号表示	ヘルプ	終了	7				
	_							
		_						リア番号は設則と打設日を入力してください。
								既設コンクリート、地盤、岩盤など非発熱体の リフト兼号は0を入力してください
))) a sha ee (2000)
								リアト番号: 1
								打設日: 2001年11月1日王
								2001年11月
								日月火水木金土
								◎ 発熱 28 29 30 31 10 2 3
								使用セン11 12 13 14 15 16 17 🔍
								単位セッシ 18 19 20 21 22 23 24
								115込み) 25 26 27 28 29 30 1
								○今日: 2001/12/16
								終局断熱温度上昇重
								温度上昇速度に関する定数
								OK Cancel

図-2.11 打設日の入力

(7-c)使用セメントの入力

使用したセメントの種類を選択する。

■温度応力解析プログラム ファイル FEM温度解析 FEM応力解析 (CPM応力解析 解析結果 ヘルプ	
● 打設リフトの設定 番号表示 ヘルプ 終了		
		 ・打設フトの設定お行います。 ・」ロメ リフト番号(打設順)と打設日を入力してください。 既設コンクリート、地盤、岩盤など非発熱体の リフト番号はのを入力してください。 リフト番号: 1 丁設日: 2001年11月1日▼
		・ 発熱体 ・ 非発熱体 使用セメント:
		終局断熱温度上記 <u>ニュアル人力</u> 温度上昇速度に関する定数 -006 OK Cancel

図-2.12 使用セメントの入力

(7-d)単位セメント量、打ち込み温度の入力

単位セメント量ならびに打ち込み温度をマウスで選択する。リスト中に適切な数値がない場 合には、直接数値を入力することができる。

■、打設リフトの設定を行います。	🛋 打設リフトの設定を行います。
リフト番号(打設順)と打設日を入力してください。	リフト番号(打設順)と打設日を入力してください。
既設コンクリート、地盤、岩盤など非発熱体の	既設コンクリート、地盤、岩盤など非発熱体の
リノト番号は0を入力してくたさい。	リト番号は0を入力してくたさい。
リフト番号: 1 👤	リアト番号: 1 -
打設日: 2001年11月1日 👤	打設日: 2001年11月1日 -
◎ 発熱体 ○ 非発熱体	◎ 発熱体 ○ 非発熱体
使用セメント: 普通ボルトランドセメント 💽	使用セメント: 普通ボルトランドセメント 🖃
単位セメント量:	単位セメント量: 300 💿
打ち込み温度: 270 -	打ち込み温度: 🔟 💽
終局断熱温度上300 13	10 終局断熱温度上20
温度上昇速度に320036	温度上昇速度に関する定数
OK Cancel	OK Cancel

図-2.13 単位セメント量、打ち込み温度の入力

(8)材料特性値の入力

マウスで要素を選択し、材料特性値を入力する。

📑 温度応刀解析フロ	97 4				■ 1/1 #	+1守1王1世	G盖度群和	17の版定		
ファイル FEM温度	解析 FEM応力解析	CPM応力解析	解析結果	ヘルプ	番号表	示へ	ルプ 終日	7		
メッシュ作 約期温』 打設リフ	:成 夏•温度固定境界							1		
材料符	王1년 ップ									
外気温										
烈(女)年) 断熱温」	記界 建上昇量の計算									
温度解析	データの保存									
温度解析	Ť									
■。材料特性値の2	л			_ 🗆 ×						
and the balance		0.2								
熱伝得	⊈(W/m℃) :	2.0								
標準的加	コンクリートの熱伝導	摔 は、2.6〜2.8 (\	W/m°C)です	•						
岩盤の熱	熱伝導率は、1.7~5.2	W/m°C)です。								
密度(kg	/m3) :	2600								
岩敷の乳	『度日』 2600~2700((e/m3)です。								
-11.88.071	3,2,10(2000 2100 1	(B) (IIIO) (C) (D								
トレ表してい	(u.=°C) -	1.3								
LP44 (K	i/kg C) -									
一般のコ	シクリートの比熱は、	1.05~1.26 (kJ/k)	₫°C)です。							
岩盤の調	と熱は、0.71~0.88 (k、	l/kg℃)です。								
		0	maal							
		Ca	incer							
					-					

(9) 解析ステップの入力

解析終了日を入力すると、自動的に解析ステップが計算される。マニュアルで解析ステップ を入力することもできる。

イル FEM温度	<i>, , , , , , , , , ,</i>				解析ステ	ップ	
	解析 FEM応力解析	CPM応力解析	解析結果	ヘルプ		(2) 2+ 22	
メッシュ作	:成 ::温度固定境界				ステップ	経過時間の)
打設リフ					1	1.0	
材料特性	E値				2	2.0	
解析人工	<u>کر ا</u>				3	3.0	
熱伝達	朝				4	4.0	
断熱温质	また昇量の計算				5	6.0	
温度畔	「ナータの」未仔				6	8.0	
温度解析	Ť.				7	10.0	
					8	12.0	
解析ステップの設定 ロコ					9	15.0	
					10	18.0	
(テッフ設定)					11	21.0	
打設日 (リフト	1): 11月1日				12	24.0	
打設日 (リフト	2): 11月 8日				13	30.0	
					14	36.0	
					15	42.0	
					16	48.0	
のになっつ					17	60.0	
ガキャリ 神令 」 口	12001年12月20				18	72.0	
	_ ᆜ 2001年	12月 上			19	84.0	
シイムステ:	ブ <u>日月火水</u>	〈木金土			20	060	
普通	25 26 27 28 2 3 4 5 9 10 11 15	3 29 30 1 6 7 8	マニュアル	設定			

図-2.15 解析ステップ

(10) 外気温の入力

施工場所の都道府県名を入力するか、緯度、標高を入力することにより施工時期に応じた外 気温が自動的計算される。マニュアルで入力することもできる。

- 🗆 ×

時

n

月 Β

-

Π

図-2.16 外気温の入力

(11)熱伝達境界の入力

境界をマウスで選択し、熱伝達境界データを入力する。

図-2.17 熱伝達境界の設定

(12) 断熱温度上昇量の計算

断熱温度上昇量を自動で計算。

📑 温度応	「力解析プログラム」				
ファイル	FEM温度解析	FEM応力解析	CPM応力解析	解析結果	ヘルプ
	メッシュ作成 初期温度・温度 打設リフト 材料特性値 解析ステップ 外気温 熟伝達境界 断熱温度上昇 温度解析デーク	固定境界 重の計算 切保存			
	温度解析				

ステップ	径過時間(h)	年	月	Β	時	リフト 1	リフト 2	
1	1	2001	11	1	1	2.07	0.00	-
2	2	2001	11	1	2	4.04	0.00	
3	3	2001	11	1	3	5.93	0.00	
4	4	2001	11	1	4	7.73	0.00	
5	6	2001	11	1	6	11.09	0.00	
6	8	2001	11	1	8	14.16	0.00	
7	10	2001	11	1	10	16.96	0.00	
8	12	2001	11	1	12	19.51	0.00	
9	15	2001	11	1	15	22.93	0.00	
10	18	2001	11	1	18	25.90	0.00	
11	21	2001	11	1	21	28.49	0.00	
12	24	2001	11	2	0	30.75	0.00	
13	30	2001	11	2	6	34.43	0.00	
14	36	2001	11	2	12	37.22	0.00	
15	42	2001	11	2	18	39.34	0.00	
16	48	2001	11	3	0	40.94	0.00	
17	60	2001	11	3	12	43.09	0.00	
18	72	2001	11	4	0	44.32	0.00	
19	84	2001	11	4	12	45.03	0.00	
20	96	2001	11	5	n	45.44	0.00	

図-2.18 断熱温度上昇量の計算

(13) 温度解析用データの保存

温度解析に必要な全てのデータが揃ったので、ファイルに保存する。

膏 温度応	「力解析プログラム」				
ファイル	FEM温度解析	FEM応力解析	CPM応力解析	解析結果	ヘルプ
	メッシュ作成 初期温度・温度 打設リフト 材料特性値 解析ステップ 外気温 熱伝達境界 断熱温度上昇: 温度解析デーク	1回定境界 重の計算 201保存			
	温度解析				

図-2.19 温度解析用データの保存

(14) 温度解析の開始

温度解析を開始する。

膏 温度応	う力解析プログラム				
ファイル	FEM温度解析	FEM応力解析	CPM応力解析	解析結果	ヘルプ
	メッシュ作成 初期温度・温度 打設リフト 材料特性値 解析ステップ 外気温 熱伝達境界 断熱温度上昇: 温度解析デーク	国定境界 重の計算 20保存			
	温度解析				

図-2.20 温度解析の開始

(15) 解析結果の出力

温度解析の結果をグラフに出力する。温度解析結果は、

- ① 材齢と温度の関係
- ② 温度分布
- ③ 要素分割図

について出力可能である。

🚔 温周	意応力解析プログラム							
ファイル	, FEM温度解析	FEM応力解析	CPM応力解析	解析結果	ヘルプ			
				FEM温度	酮析	۲	材齢と温度の関係	
				FEM温度 CPM温度	配力解析 配力解析	*	温度分布	
							要素分割図	

図-2.21 解析結果の出力

まず始めに、出力したい節点をマウスで選択する。次にメニューバーの「描画」→「グラフ 表示」、あるいはマウス右クリックで「グラフ表示」を選択する。

図-2.22 出力したい節点の選択

図-2.23 温度解析結果

次に、温度分布を選択すると、ステップ選択画面になり、選択したステップの温度分布図が 表示される。

図-2.24 温度分布図

2-4 解析対象(FEMひび割れ幅法)

マスコンクリートの温度応力解析プログラム(JCMAC2)の解析例(FEMひび割れ幅法) として図-2.25 および図-2.26 に示すように、コンクリートスラブ上に壁が打設された時のコ ンクリートのひび割れ幅を求める。なお、この壁は左右対称とし、右半分のみ解析する。温度 解析は、2次元FEM(4節点アイソパラメトリック要素)で行う。

図-2.25 解析対象構造物(奥行き方向 15,000mm)

2-5 解析条件と物性値

解析対象の壁状構造物は、東京都に打設されるものとする。コンクリートスラブは、既に打 設されているものとし、非発熱体として扱う。<u>なお、FEMひび割れ幅解析では、旧コンクリ</u> ートを発熱体としては扱えないので、注意すること(バージョンアップにより扱えるように改 良の予定)。壁部分は、4月1日に打設されたものとする。なお、解析は、4月30日まで行う。 使用したセメントは、高炉セメントB種で、単位セメント量は、300kg/m³、打設時の練り上が り温度は、20℃である。温度解析に用いた熱特性値を**表-2.1**に示す。

図-2.26 解析対象(右半分のみ解析)

表-2.1 温度解析の熱特性値

物性値	岩盤	コンクリート
初期温度	15°C	20°C
比熱	$0.8~{ m kJ/kg^{\circ}C}$	$1.3 ext{ kJ/kg}^{\circ}\text{C}$
密度	2600 kg/m^3	2300 kg/m^3
熱伝導率	2.3 W/m°C	2.8 W/m°C
※コンクリート側面の熱伝達係	系数 打設後1週間まで 合	板 (8 W/m ² ℃)

1週間以後 露出面(11 W/m²℃)

その他の熱伝達係数

露出面 (11 W/m²℃)

解析対象構造物の有限要素メッシュを図-2.27に示す。

2-6 温度解析の流れ

温度解析の流れは、2-3と同様である。

		10	1 10)2 10	03	104						
4	0	97	78	79	80	100						
000	0	93	75	76	77	96	単位 (mm)					
Ь 2,	=1,800	80	72	73	74	92	節点数=104					
ー 「 ム	.@450=	85	69	70	71	88	要素数	=80				
新コン	0	v 81	66	67	68	84						
	10	75	63	64	65	78 79)	.80				
500	ξŌČ	69	58	59	60	61	62	74				
Ь 3,	700	63	53	54	55	56	57	68				
- (ı ć	1,000	57	48	49	50	51	52	62				
	1,300	× 49	43	44	45	46	47	54 55	j	_ 56		
		41	36	37	38	39	40	41	42	48		
	00	33	29	30	31	32	33	34	35	40		
₹ 9,00C	0,0=0,0	0.5	22	23	24	25	26	27	28			
指盤	6@1,5	25 17	15	16	17	18	19	20	21	32 24		
		9	8	9	10	11	12	13	14	16		
		,	1	2	3	4	5	6	7			
		1	100 ²	3 100	4 100	700 5	6 1,500	1,500	1,500			
₹												

図-2.27 温度解析要素分割図

解析結果の出力

図-2.28 温度履歴出力位置

節点 69, 75, 85, 93, 101 の温度履歴を出力

図-2.29 温度履歴

図-2.30 温度分布 (ステップ12, 材齢1日)