第3章 CPMひび割れ幅法

3-1 解析対象

マスコンクリートのひび割れ幅計算プログラム (JCMAC2) によるひび割れ解析の例として 図-3.1 に示すように、岩盤上にコンクリートスラブが打設され、さらに壁が打設された時のコ ンクリートと鉄筋に発生する応力およびひび割れ幅を求める。鉄筋の座標および径は、表-3.1 に示すとおりである。なお、温度解析は、第2章で既に行われている。ここでは、CP法によ る応力解析について説明する。

図-3.1 解析対象構造物(奥行き方向 15,000mm)

鉄筋番号	x 座標	y 座標	鉄筋径	鉄筋番号	x 座標	y 座標	鉄筋径
1	150	100	D25	14	1950	900	D25
2	600	100	D25	15	2400	900	D25
3	1050	100	D25	16	200	1100	D22
4	1500	100	D25	17	500	1100	D22
5	1950	100	D25	18	800	1100	D22
6	2400	100	D25	19	800	1300	D35
7	2400	300	D25	20	800	1600	D35
8	2400	500	D25	21	800	2000	D35
9	2400	700	D25	22	800	2400	D35
10	150	900	D25	23	800	2700	D35
11	600	900	D25	24	200	2900	D22
12	1050	900	D25	25	500	2900	D22
13	1500	900	D25	26	800	2900	D22

表-3.1 鉄筋の座標および径

CPひび割れ幅法での要素分割を図-3.2に示す。

図-3.2 CPひび割れ幅法での要素分割

3-2 解析条件と物性値

応力解析に用いた材料特性値を表-3.1に示す。

物性値		コンクリート		
圧縮強度(材齢91日)		30 N/mm^2		
拘束体ヤング係数(岩盤)		4,000N/mm ²		
被拘束体と拘束体のヤング係数比 $E_c(28)/E_r$	Ec/E	Er=24,422/4,000	=6.1	
第1リフト <i>L/H</i>	L/H	H=15,000/1,000=	=15	
第2リフト <i>L/H</i>	L/I	H=15,000/3,000	=5	
外部拘束係数(第1リフト)	$R_N = 0.62$	$R_{MI} = 1.0$	$R_{M2}=1.02$	
外部拘束係数(第2リフト)	$R_N = 0.34$	$R_{M1} = 0.90$	$R_{M2}=1.41$	
有効ヤング係数 $E_{_e}(t)$	$\phi(t) imes 4.7 imes 10^3 \sqrt{f_c'(t)}$			
クリープの影響を考慮したヤング係数の補正係数		示方書に準拠		
圧縮強度 $f_c'(t)$ (kgf / cm^2)		$\frac{30t}{4.5 + 0.95t}$		
引張強度 $f_i(t)$ (kgf / cm ²)		$0.4427 \sqrt{f_c'(t)}$		
熱膨張係数 α		10×10^{-6}		

表-3.1 応力解析の材料特性値

①材齢 t日のコンクリートの圧縮強度

材齢91日の圧縮強度から次の推定式により算出

$$f_c'(t) = \frac{t}{a+bt} f_c'(91)$$

ただし、*a,b*はセメントの種類により異なっており、 普通ポルトランドセメント : *a*=4.5, *b*=0.95 中庸熱ポルトランドセメント : *a*=6.2, *b*=0.93 早強ポルトランドセメント : *a*=2.9, *b*=0.97 高炉セメント : *a*=6.2, *b*=0.93

②コンクリートの引張強度

コンクリートの圧縮強度より算出

$$f_t(t) = c\sqrt{f_c'(t)}$$

ここに、 $f'_{c}(t)$: 材齢t日のコンクリートの圧縮強度(N/mm²) $f_{t}(t)$: 材齢t日のコンクリートの引張強度(N/mm²) c: コンクリートの乾燥の程度によって異なるが、<u>0.4427 を標準とする。</u>

③コンクリートのヤング係数

コンクリートの圧縮強度より算出

$$E_e(t) = \phi(t) \times 4.7 \times 10^3 \sqrt{f_c'(t)}$$

- ここに、 $E_{e}(t)$: 材齢 t 日における有効ヤング係数 (N/mm²)
 - φ(t):温度上昇時におけるクリープの影響が大きいことによるヤング係数の補正係数
 材齢3日までφ=0.73、材齢5日以降φ=1.0、材齢3日から5日までは直線補間

3-3 ひび割れ幅解析の流れ(CPひび割れ幅法によるひび割れ解析)

(1)基本条件設定

まず始めに「基本条件設定」を選ぶ。初めての場合にはファイルを聞いてくるので、ファイ ル名を入力する。ファイル名の入力が終わると、線膨張係数、応力解放領域、付着喪失等価領 域、鉄筋ヤング係数、ひび割れ発生条件を入力し、「**OK**」ボタンを押す。応力解放領域、付 着喪失等価領域の考え方については、次ページを参照のこと。

🔹 温度応力解析プログラム			ファイル名を入力し	ってください。			? 🗙
ファイル FEM温度解析 FEMのび割れ幅解析	CPOび書机幅解析 基本条件設定 メッシュ作成 鉄筋設定 強度設定 拘束条件(外部拘) CPM温度応力解析	解析結果 ヘルブ 東係数) チ	ファイルの場所(ひ) 最近使ったファイル で、ファイル デスクトップ マイドキュメント マイドキュメント マイネットワーク	アータ Pexample-Icate の Peabe2 dat Pume.dat		- E č I-	
				、 ファイル名(№): ファイルの種類(<u>T</u>):	 データ(*.dat) ̄ 読み取り専用ファイルとして関K(B)	•	除 (<u>0</u>) キャンセル

■ 計算条件設定		
線膨張係数	0.00001	(1/℃)
応力解放領域	2200	(mm)
付着喪失等価領域	200	(mm)
鉄筋ヤング係数	200000	(N/mm2)
ひび割れの発生条件		
ひび割れ指数が、	1.0 以下	になるとひび割れが発生
☑ ひび割れ幅解析		
ОК	Can	cel

図-3.3 基本条件の設定

(2) 応力解放領域、付着喪失等価領域

CPひび割れ幅で対象としているのは、壁状構造物、ボックスカルバートおよびスラブ状構 造物である。ここでは応力解放領域、付着喪失等価領域の説明のため、図-3.4に示すような基 礎コンクリート上に新しく打ち込まれた壁状構造を考える。この構造物の被拘束体である新コ ンクリートのほぼ中央部全断面に、温度応力による貫通ひび割れが生じたものとする。貫通ひ び割れが生じた時、ひび割れ断面の鉄筋ひずみは急激に増加し、逆にひび割れ周辺のコンクリ ートひずみは応力緩和により減少する。また、ひび割れ断面の両側で、鉄筋とコンクリートの 付着がある程度破壊され、同時に新コンクリートと基礎コンクリートの境界面では、ずれが生 じるものと考える。すなわち図-3.5に示すように、ひび割れ断面を中心に片側 *l*_sの区間で鉄筋 とコンクリートの付着がなく、また片側 *l*_eの区間で鉄筋とコンクリートの境界面が剥離してい ると考える。図中の *l*_sは鉄筋の付着喪失等価領域の長さを、また *l*_eは、応力解放領域の長さで ある。

図-3.4 壁状構造物

 l_s :付着喪失等価領域 l_c :応力解法領域

応力解放領域*L*についてFEMとの比較および実験値との比較により得られた結果を図-3.6 に示す(詳しくは、マスコンクリートの温度応力研究委員会報告書「温度応力ひびわれ幅算定 方法についての提案」、日本コンクリート工学協会、1992年9月を参照のこと)。

ひび割れ間隔については、壁高さの影響を受けるため、ひび割れ間隔 W と壁高さ H の比 W /Hを横軸にとり、 l_c/l_s を縦軸にとってある。W/H がほぼ 3.75 以上では、 $l_c/l_s=11$ であり、 W/H が 3.75 から小さくなるにしたがって、 l_c/l_s は減少する。すなわち、ひび割れ間隔 W と 壁高さ H の比 W/H が 3.75 以上の場合は、 $l_c/l_s=11$ とし、また、W/H が 3.75 以下の場合に は、次式で示す回帰式より得られた l_c/l_s をの値を用いればよい。

 $\frac{l_c}{l_s} = 2.98 + 2.13 \times \frac{W}{H}$

(3.1)

図-3.6 W/Hとl_c/l_sの関係

(3)メッシュ作成

次に「**メッシュ作成**」を選び、温度解析のための有限要素メッシュからCP法に使うメッシ ュを切り出す。

OF ILA C I	10.04	1-1/1 624	 - 10 K	
号表示 /	いげ	終了		
		1		
	┢	- <u>}</u>		
		4		
	┿	-		
Ц				
┥┥	-	_		

図-3.7 CPひび割れ幅法メッシュの切り出し

メッシュを選択したら、マウスの右ボタンをクリックし、「**CP法解析領域選択**」をクリック する。

(4)鉄筋設定

マウスを用いて鉄筋の位置と断面積を入力する。マウスの右ボタンをクリックすると

「**画面上で設定**」、「**鉄筋データファイルの読み込み**」「**鉄筋データファイルの修正**」の3つが 選択できる。はじめて鉄筋のデータを入力する場合には、「**画面上で設定**」を選択する。

鉄筋の座標と断面積を入力する。複数の鉄筋を入力する際には、「複数本入力」のチェック ボタンをチェックし、本数とピッチ、方向を入力する。入力が終わると、鉄筋情報を登録する かどうか聞いてくるので、良ければ「**OK**」ボタンを押す。

なお、入力する座標は、画面メッシュの左下の□印が原点となる。

▲ 温度 Ⅰ	志力解析プログ	54			● 鉄筋設定	
ファイル	FEM温度解析	FEMひび割れ幅解析	CPひび割れ幅解析	解析結果 ヘルプ	番号表示 ヘルプ 終了	
			基本余件設定 メッシュ作成			
			拘束条件(外部拘	東係数)		
			CPM温度応力解	析		鉄筋設定 ・ 画面上で設定
						鉄筋データファイルの読み込み 鉄筋データファイルの修正
	2:22				 Statistic 	
<u>余生 なち /</u>	の広博(非進点	からの広博)を入力	アノださい		・ 55501232 (計算点もないの応援)を3	し て/だざい
3大用力0	9座標(蓥华点	からの産様)を入力し 				
×	座標	(mm) y座i	票	(mm)	×座標 150 (mm) 」	/座標 100 (mm)
迷斤	面積「	•		(mm^2)	断面積 D25 👤	506.7 (mm^2)
複数本	ト入力する際は	は、下のチェックボック	スをチェックしてくた	Eðin.	複数本入力する際は、下のチェックボ	ックスをチェックしてください。
	□ 複数本2	入力			☞ 複数本入力	
					★数 6 ▼ ピッチ	450 (mm) 方向 V
						<u>左</u>
	0 P	<	Cano) el	ок	Cancel
			番号表示 へル	ブ 終了		
				FEMMass	con 🔀	
				鉄筋の 度 総数筋の 着	標は正しく表示されても味すか。 緑を行って良いですか。	
			•	• •	• • •	
						-
			図-3	5.8 鉄筋設	(回面上で設定)	

既に鉄筋データが入力されている場合には、「鉄筋データファイルの読み込み」ボタンを押 し、鉄筋データを読み込む。また、鉄筋データを修正する際には、「鉄筋データファイルの修 正」ボタンを押すと、エクセルのファイルが立ち上がり、座標や鉄筋断面積を修正することが できる。なお、同じ座標に鉄筋データを重ねて入力した場合には、最後に入力したものに書き 換えられるので注意すること。

図-3.9 鉄筋設定(鉄筋データの読み込みと修正)

(5) 強度データの入力

強度を設定する領域をマウスでドラッグし、マウスの右ボタンをクリックする。「強度設定」 を選択し、セメントの種類を選択する。セメントの種類を選択するとセメントごとの強度定数 が表示される。この画面では、強度定数の修正を行うこともできる。「ヤング係数の補正係数 ゆの設定」をクリックすると、補正係数が設定できる。デフォルトは、コンクリート標準示方 書の推奨値である。強度係数の設定が終わったら「OK」を選択し、28日または91日の圧縮 強度を入力する。

🔹 温度応力解析プログラム			度設定			
ファイル FEM温度解析 FEMひび割れ幅解析	CPひび割れ幅解析 解析結果 へ. 基本条件設定	ルプ 番号表	示 ヘルプ 着	冬了		
	メッシュTF成 鉄筋設定					
	確度設定 拘束条件(外部拘束係数)					
	CPM温度応力解析					
		_				

図-3.10 強度設定領域の選択

Sec CP法 強度設定 📃 🗆 🔀	🖻 強度係数の設定
大地の 種材。 並通ゼリレニン ボセル・	ヘルプ 終了
材料の裡類:「普通ホルトラントビメント」	王統治度: $fc'(t) = \frac{t}{t} fc'(91)$
早焼ホルトランドセメント CV'。 通性低数 日本語がセントB種	a+bt
1年11月1日、1月1日日本の人力 強度係数の入力 弾性係数、引張強度の直接入力	圧縮強度~引張強度: $ft(t) = c fc'(t)^d$
圧縮強度 (N/mm2): ○ 材齢28日 ⓒ 材齢91日	圧縮強度 \sim ヤング係数: $E(t)=\phi \ e \ fc'(t)^{-f}$
	a 4.5 d 0.5
	b 0.95 e 4700
O K Cancel	c 0.44 f 0.5
	ヤング係数の補正係数 Φ の設定
図-3.11 使用セメントの選択	
	OK Cancel

図-3.12 セメントに応じた強度定数

マント	<mark>ッグ係動の</mark> 剤 終了	i正係 🔳	■ CP法 強度設定
			材料の種類: 普通ボルトランドセメント ▼
	材齢(日)	補正係数	コンクリートの種類を入力してください。
	1	0.730	
	2	0.730	弾性徐毅、列張强度を直接人力することもでぎます。
	3	0.730	
	4	0.865	
	5	1.000	
	6	1.000	上稲强度(N/mm2): 30 € 材齢91日
	7	1.000	
	ок	Cancel	
			O K Cancel

図-3.13 ヤング係数の補正係数

図-3.14 圧縮強度の入力

(6) 外部拘束係数の入力

外部拘束係数とは、岩盤や地盤などの拘束体がマスコンクリート構造物を拘束する効果を表した係数である。外部拘束係数は、構造物の奥行き(L)と高さ(H)の比(L/H)、および被拘束体と拘束体のヤング係数比(Ec/Er)をもとにコンクリート標準示方書に掲載されている算定図から求める。このプログラムでは、L/H および Ec/Er を入力することにより自動的に算出する機能がある。外部拘束係数における L/H, Ec/Er の考え方を図-3.15 に示す。

コンクリート標準示方書の解説図を参照

図-3.15 外部拘束係数における L/H, Ec/Er の考え方

■ 温度応力解析プログラム		● 外部拘束係数の入力
ファイル FEM温度解析 FEMひび割れ幅解析 CPひび 基本	割れ幅解析 解析結果 ヘルプ	ヘルプ 終了
☆++ メッシ 鉄筋 強度 均東。 CPM	RT32と (作成 没定 发定 注(八小部拘束係数) 温度応力解析	外部拘束係数を入力してください。
		軸拘束係数:
		曲げ拘束係数1:
		曲げ拘束係数2:
		L/H, Ec/Erを入力することにより自動的に計算することもできます。
		スラブ状構造物 壁状構造物(1層目) 壁状構造物(2層以降)
		OK Cancel

図-3.16 外部拘束係数の入力

外部拘束係数は、直接入力することも可能であるが、L/H と Ec/Er から自動的に計算することもできる。「スラブ状構造物」「壁状構造物(1層目)」「壁状構造物(2層目)」を選択すると、それぞれに応じた外部拘束係数が計算できる。

	輔拘理	東係数(RN)	Ì		曲げ	向東係數	t(RM1)		Ύ	曲	が拘束係	嬱(RM2)
Ec/Er	0	5	10	15	20	25	30	35	40	45	50	55	60	65 🗸
50	0.00	0.05	0.12	0.18	0.26	0.33	0.41	0.46	0.52	0.57	0.61	0.65	0.68	0.7/
48	0.00	0.05	0.12	0.19	0.27	0.34	0.41	0.47	0.53	0.58	0.62	0.66	0.70	0.7(
46	0.00	0.05	0.12	0.20	0.28	0.35	0.42	0.48	0.53	0.58	0.63	0.67	0.71	0.7
44	0.00	0.05	0.13	0.21	0.28	0.36	0.43	0.49	0.54	0.60	0.64	0.68	0.72	0.75
42	0.00	0.04	0.14	0.22	0.29	0.37	0.44	0.50	0.56	0.61	0.65	0.69	0.73	0.7t
40	0.00	0.06	0.14	0.23	0.30	0.38	0.45	0.51	0.57	0.62	0.66	0.70	0.74	0.7
38	0.00	0.06	0.14	0.23	0.31	0.39	0.46	0.53	0.58	0.63	0.68	0.72	0.75	0.78
36	0.00	0.07	0.15	0.24	0.33	0.40	0.47	0.54	0.60	0.65	0.69	0.73	0.76	0.75
34	0.00	0.07	0.16	0.25	0.34	0.42	0.50	0.56	0.62	0.66	0.70	0.74	0.77	0.8(
32	0.00	0.07	0.16	0.26	0.35	0.44	0.51	0.58	0.63	0.68	0.72	0.76	0.78	0.8
30	0.00	0.08	0.18	0.28	0.37	0.45	0.53	0.60	0.64	0.70	0.73	0.77	0.80	0.82
28	0.01	0.08	0.19	0.29	0.39	0.47	0.55	0.61	0.66	0.71	0.75	0.78	0.81	0.84
26	0.01	0.09	0.20	0.30	0.40	0.50	0.57	0.62	0.68	0.73	0.77	0.80	0.82	0.85
24	0.02	0.09	0.21	0.32	0.42	0.51	0.59	0.64	0.70	0.74	0.78	0.82	0.83	0.8t
22	0.02	0.10	0.22	0.34	0.44	0.54	0.61	0.66	0.72	0.76	0.80	0.82	0.85	0.81
20	0.03	0.10	0.23	0.36	0.46	0.56	0.63	0.69	0.74	0.78	0.81	0.84	0.86	0.8
18	0.03	0.11	0.25	0.39	0.50	0.59	0.65	0.72	0.76	0.80	0.83	0.86	0.88	0.8
16	0.03	0.12	0.27	0.41	0.53	0.61	0.68	0.73	0.78	0.82	0.85	0.87	0.89	0.9
L/H, E L/H Ec/	ic/Erの H 「 /Er「 ト部拘])入力-	15 3.1 の計算		- 9 9 	ト部均 軸拘束 曲(デ約 曲(デ約	東係数 夏係数 回東係 回東係	文 RN 数 RM 数 RM	л1 Г л2 Г	0.6	32 00 02		C)K ncel

図-3.17 外部拘束係数の自動計算

L/H と Ec/Er を入力し、「外部拘束係数の計算」を選択すると軸拘束係数 RN、曲げ拘束係 数 RM1、曲げ拘束係数 RM2 が自動的に計算される。計算された値は、自動的に図-3.16 に反 映される。

(7) CPひび割れ幅法によるひび割れ幅の開始

メニュー画面より「CP ひび割れ幅解析」を選択し、計算を開始する。

基本条件設定 メッシュ作成 鉄筋設定 強度設定 拘束条件(外部拘束係数) CPびU割れ幅解析	基本条件設定 メッシュ作成 鉄筋設定 強度設定 拘束条件(外部拘束係数) CPびび割れ幅解析	基本条件設定 メッシュ作成 鉄筋設定 強度設定 拘束条件(外部拘束係数) CPび割れ幅解析	ファイル FEM温度解析	FEMOび割れ幅解析	CPひび割れ幅解析	解析結果	NR
CPひび割れ幅解析	CPひび割れ幅解析	CPひび割れ幅解析			基本条件設定 メッシュ作成 鉄筋設定 強度設定 拘束条件(外部拘:	束係数)	
					CPひび割れ幅解析	Ť	

図-3.18 CPひび割れ幅法によるひび割れ幅の計算

ひび割れ指数が図-3.3 で設定した値以下になると、ひび割れが生じたものとして、画面上に その材齢(日)と節点番号を表示して計算が止まる。(図-3.19 参照)

なお、CPひび割れ幅法は、壁で発生したひび割れを対象としているため、スラブ部分では、 ひび割れ指数が設定した値以下になっても、ひび割れ解析を行わない。

	FEMMasscon2
ひび割れ解析 🛛 🔀	望の数は1つですか? 2連のボックスカスバートの場合は、壁は2つです。 CPひび割れ幅法では、壁2つまで計算できます。
材齢 13日、節点 31でひび割れが発生しました ひび割れ幅解析に進みますか	「はい」 > 1つ 「いいえ」 >2つ ※通常の壁の場合は、「はい」を選択してください。 ※2連ボックスカルバートのように壁が2つある場合は、「いいえ」を選択してください

図-3.19 ひび割れの発生

図-3.20 壁の数

壁部分でひび割れが発生すると、ひび割れが発生したことを知らせるメッセージが画面上に 表示される(図-3.19参照)。ここで、「はい」を選ぶと、ひび割れ解析に移る。もし、別の箇 所で生じたひび割れに足してひび割れ解析を行いたい場合には、「いいえ」を選ぶと、他の節 点でも設定したひび割れ指数以下になっているときは、その節点番号を表示し、それ以外は次 のステップの計算に移る。

CP ひび割れ幅法では、壁が2カ所ある場合(例えば2連のボックスカルバート等)も解析 できるので、ひび割れ解析に移るときに壁の数を聞いてくる。(図-3.20および図-3.21参照)

本例題では、壁は1つであるので、「はい」を選ぶ。なお、ひび割れ解析は、1つの壁において1リフトだけしか行えない。

左右対称であるので、半分の領域のみで解析を行う。

図-3.21 壁が2箇所の例(2連のボックスカルバート)

(5) 解析結果の出力

CPひび割れ幅法の結果を出力する。CPひび割れ幅法の結果は、

- ① 材齢とコンクリート応力の関係
- ② 材齢と鉄筋応力の関係
- ③ 材齢と温度ひび割れ指数の関係
- ④ 材齢とひび割れ幅の関係

について出力可能である。

なお、⑤応力分布、⑥ひび割れ指数分布については、各ステップごとの表示の他に、最大応 力分布の表示、最小ひび割れ指数分布の表示が可能である。

図-3.18 解析結果の出力

①材齢と応力の関係

図-3.19 材齢とコンクリート応力の関係

⑤応力分布

⑥ひび割れ指数分布

⑦要素分割図

②材齢と鉄筋応力の関係

図-3.20 材齢と鉄筋応力の関係

③材齢とひび割れ指数の関係

④材齢とひび割れ幅の関係

図-3.22 材齢とひび割れ幅の関係