
The 2nd JCI & ACI Joint Seminar
July 13, 2015 Tokyo, Japan
Andrew W. Taylor, PhD, SE, FACI
KPFF Consulting Engineers, Seattle, USA

Reorganization of ACI 318-14

- The first regulations were published in 1908 and first ACI code in 1910
- Working stress design up until 1971
- Organization unchanged
- 2008 started reorganization
- ACI 318-14 reorganized

Old and New Organization

ACI 318-11
- Mixture of member-based and behavior-based provisions
- Provisions scattered
- Does not follow the design process
- Increased potential for errors

ACI 318-14
- Primarily member-based provisions
- Supporting “toolbox” chapters
- Follows the design process
- Design roadmap for each member type

Old and New Organization

ACI 318-11
- Shear Strength, Chapter 11
- Flexural and Axial Strength, Chapter 10
- Strength Reduction Factors, Chapter 9
- Lap Splice, 12.35-12.37
- Ties in Joint, 31.10.2
- Ties, 7.305
- Stairs, 7.8.1.1
- Cover, 7.7
Old and New Organization

ACI 318-14 Organization

- General
- Analysis
- Members
- Joints/Connections/Anchors
- Seismic
- Materials and Durability
- Strength and Serviceability
- Reinforcement
- Construction
- Evaluation

General: Chapters 1 to 4
1 – General Provisions
2 – Notation and Terminology
3 – Referenced Standards
4 – Structural Systems Requirements (new)

Analysis: Chapters 5 and 6
5 – Loads
6 – Structural Analysis

Members: Chapters 7 to 14
7 – One-Way Slabs
8 – Two-Way Slabs
9 – Beams
10 – Column
11 – Walls
12 – Diaphragms (new)
13 – Foundations
14 – Plain Concrete

Joints/Connections/Anchors: Chap. 15 to 17
15 – Beam-Column and Slab-Column Joints
16 – Connections Between Members
17 – Anchoring to Concrete

Seismic: Chapter 18
18 – Earthquake Resistant Structures

Materials and Durability: Chapters 19 and 20
19 – Concrete: Design and Durability Properties
20 – Steel Reinforcement Properties, Durability and Embedments

Strength and Serviceability: Chapters 21 to 24
21 – Strength Reduction Factors
22 – Sectional Strength
23 – Strut and Tie Models
24 – Serviceability Requirements

Reinforcement: Chapter 25
25 – Reinforcement Details

Construction: Chapter 26
26 – Construction Documents and Inspection

Evaluation: Chapter 27
27 – Strength Evaluation of Existing Structures
• Changes in Seismic Provisions

- 318-11 Chapter 21 → 318-14 Chapter 18
- Seismic chapter was not reorganized
- Limited, but important, technical changes

Confinement in SMRF columns with high P_u

Additional cross ties are required

ACI 318-14, 18.7.5.2(f): Where $P_u > 0.3A_f f_y$ or $f_y > 10,000$ psi in columns with rectilinear hoops, every longitudinal bar ... around the perimeter ... shall have lateral support provided by the corner of a hoop or by a seismic hook, and the maximum value of h_y shall not exceed 8 in.

Note: This same provision applies to concrete truss elements with high axial load. See 18.12.11.1

Transverse Reinforcement in SMRF Columns With High P_u

For high P_u, additional check (c) on A_{sh}

Table 18.7.5.4—Transverse reinforcement for columns of special moment frames

<table>
<thead>
<tr>
<th>Transverse reinforcement</th>
<th>Conditions</th>
<th>Applicable expressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_u < 0.3A_f f_y$ and $f_y < 10,000$ psi</td>
<td>Greater of (a) and (b)</td>
<td>$0.25 A_s f_y$ (a)</td>
</tr>
<tr>
<td>$P_u > 0.3A_f f_y$ or $f_y > 10,000$ psi</td>
<td>Greatest of (a), (b), and (c)</td>
<td>$0.09 f_y^{-1}$ (b)</td>
</tr>
</tbody>
</table>

Where:
- $K_c = $ confinement effectiveness factor
- $K_n = $ confinement effectiveness factor
Headed Bars in SMRFs at Edge Joints

18.8.3.4: Two options for confinement of bar heads:

- Minimum Column Extension
- Add "T" Bars at Top

Spacing of Headed Bars in Joints

For SMRF joints, minimum 3d, clear spacing

ACI 318-14, 18.8.5.2: For headed deformed bars satisfying 20.2.1.6, development in tension shall be in accordance with 25.4.4, except clear spacing between bars shall be permitted to be at least 3d, or greater.

Special Structural Walls Detailing

Certain special walls require two curtains of reinforcement:

ACI 318-14, 18.10.2.2: At least two curtains of reinforcement shall be used in a wall if $V_u > 2A_v \cdot \lambda \frac{f'}{f}$, or $h_w/e_w \geq 2.0$, in which h_w and e_w refer to height and length of entire wall.

Based on observations from Chile and N.Z. Earthquakes

Special Structural Walls Detailing

Requirement for special boundary elements modified:

- **ACI 318-14, 18.10.6.2**
- $c = \text{depth of wall neutral axis to extreme compressive fiber}$
- Need boundary element if

$$c \geq \frac{\ell_w}{600(1.5)(\delta_u/h_w)}$$

- Ratio δ_u/h_w shall not be taken less than 0.005.

Special Structural Walls Detailing

Minimum width (thickness) of walls in compression zone:

- **Width of wall compression zones (ACI 318-14, 18.10.6.4)**
 (b) Width of the flexural compression zone, b, over the horizontal distance calculated by $18.10.6.4(a)$, including flange if present, shall be at least $b = (\text{b (unbraced Wall Height)}/16$
 (c) For walls or wall piers with $h_w/e_w \geq 2.0$ that are effectively continuous from the base of structure to top of wall, designed to have a single critical section for flexure and axial loads, and with $e/w \geq 3/8$, width of the flexural compression zone b over the length calculated in 18.10.6.4(a) shall be greater than or equal to 12 in.

Special Structural Walls Detailing

Ties in walls where special boundary elements not required:

ACI 318-14, 18.10.6.5 (a): If the boundary reinforcement ratio exceeds $400/f_y$, ...tie spacing < the lesser of 8 in. and $8d_y$ of the smallest vertical bar, except tie spacing < the lesser of 6 in. and $6d_y$ within the greater of ℓ_y and $M_y/4V_y$ above and below critical sections where yielding of longitudinal reinforcement is likely to occur as a result of inelastic lateral displacements.

See illustration in next slide →
Special Structural Walls Detailing

Ties spacing where special boundary elements not required:

\[\rho < \frac{400}{f_p} \]

\[\rho \geq \frac{400}{f_p} \]

\[\text{max} \left\{ \frac{M_d}{V_d \text{critical section}} \right\} \]

- No ties required
- Lesser of 8 inches or 8 times diameter smallest longitudinal bar
- Lesser of 6 inches or 6 times diameter smallest longitudinal bar

ACI envisions a future where everyone has the knowledge needed to use concrete effectively to meet the demands of a changing world.

ACI develops and disseminates consensus-based knowledge on concrete and its uses.

A Few Moments About the American Concrete Institute

Andrew W. Taylor
An ACI Ambassador

An Institute of Members & Chapters

- Over 18,000 institute members from 120 countries
- Plus about 20,000 members from ACI’s 165+ Chapters and Student Chapters
- Engineers, researchers, students, contractors, architects, educators, manufacturers, producers, governments, and more
My Involvement with ACI

- Began in 1990 when I became a researcher at the National Institute of Standards and Technology. I have been active with ACI technical committees ever since.

Andrew W. Taylor
ACI Fellow
ACI 318 Building Code
ACI 318-H (Chair) Seismic Provisions
ACI 374 Performance-Based Design
ACI Technical Activities Committee

Thank you

For the most up-to-date information, please visit the American Concrete Institute at: www.concrete.org.