「コンクリート工学 | Vol. 54 (2016) 総目次

w	日本建築学会「プレストレストコンクリート造建築物の性能評	
巻 頭 言	価型設計施工指針(案)・同解説 の発刊	
(巻) (号) (頁)		
2016年の新春を迎えて 三橋 博三…54-1-1	日本建築学会「壁式鉄筋コンクリート造設計・計算規準・同解	
心残りなこと-ある気になる実験結果-	説」の改定 井上芳生・勅使川原正臣・	
	楠 浩一·稲井栄一···54 - 7 - 681	
耐久性向上のためのイノベーション … 二羽淳一郎 …54 - 3 - 235	ニューアプローチ指令からの新しい法的枠組み規則 NLF に基	
技術革新とレジリエンス前川 宏一…54-4-335	づく建設製品指令 CPD からの建設製品規則 CPR の制定	
大学生の就活戦線の変化 大久保孝昭…54 - 5 - 427	·····································	
転 機 鎌田 敏郎…54 - 6 - 597	鉄道構造物等設計標準・同解説(鋼とコンクリートの複合構造	
20年前の予測阿部 淳一…54-7-677	物) 改訂の概要池田 学・岡本 大・	
会長に就任して 丸山 久一…54-8-751	谷村幸裕…54 - 8 - 755	
熊本地震の被害から建築物の耐震設計を考える	アセットマネジメントシステム ISO 55001 の規格制定と認証	
前田 匡樹…54-9-825		
土木コンクリート構造物と都市景観 · · 森川 英典 · · · 54 - 10 - 983	土木学会「施工性能にもとづくコンクリートの配合設計・施工	
コンクリートの社会資本への貢献…泉 達男…54-11-1087	指針 [2016 年版]」の概要	
保全の魅力並川 賢治…54-12-1151		
	橋本親典・綾野克紀…54 - 10 - 987	
随 筆	低炭素型セメント結合材を用いたコンクリート構造物の設計・施	
石灰とくらし藤田 洋三…54-2-203	エガイドライン (案)…中村英佑・古賀裕久・	
千葉・大分・新潟・神奈川―RC 建物に学ぶ旅―	渡辺博志…54 - 10 - 993	
	日本建築学会「鉄筋コンクリート造建築物の耐久設計施工指針・	
自動運転でのコンクリート役割 高橋 秀喜…54 - 4 - 412	同解説」の改定について	
かえりみる 名和 洋人…54-6-664		
退避室秘話	福山智子…54 - 11 - 1091	
孫のためにもうひと踏ん張り 天野 玲子…54-8-795	日本建築学会「鉄筋コンクリート構造保有水平耐力計算規準	
コンクリートの濡れ色 田中 享二…54-10-1065	(案)・同解説」の概要	
鉄筋コンクリート構造と断熱構法… 小峯 裕己…54-11-1136	和泉信之·鹿島 孝·	
コンクリートから人 (にやさしいコンクリート) へ	楠 浩一・福山 洋…54 - 12 - 1155	
	土木研究所「コンクリート構造物の補修対策施工マニュアル	
	(案)」····································	
解 説	内藤 勲·櫻庭浩樹…54 - 12 - 1162	
「PE シースを用いた PC 橋の設計施工指針 (案)」の制定とその 内容について下村 匠・小林孝一・	特 集	
天谷公彦・手塚正道…54-2-137	●インフラ構造物のリニューアル(更新)・修繕の計画と技術	
サスティナブル コンストラクションと環境ラベル	1. 道路構造物	
	1.1 中日本高速道路における大規模更新・大規模修繕の	
既設コンクリート構造物の維持管理と補修・補強技術	取り組み中岡 毅・清水章 —…54 - 1 - 4	
既設コンクリート構造物の維持管理と	1.2 首都高速道路の更新計画… 徳永 利哉…54-1-9	
補修・補強技術に関する特別委員会…54-3-239	1.3 高速道路橋の大規模更新・修繕に関する研究の取組	
土木学会コンクリート標準示方書に基づいた有限要素解析によ	みと今後の展望 広瀬 剛…54-1-15	
る性能照査とその高度化に向けた取り組み	1.4 UFC 道路橋床版の開発と大規模更新への適用性検討	
土屋智史・渡辺忠朋…54 - 3 - 246	一宮利通·藤代 勝…54 - 1 - 21	
低レベル放射性廃棄物処分施設のコンクリート構築物のリスク	1.5 道路トンネルにおける点検と補修・補強技術	
論的安全評価におけるシナリオ選定		
	2. 鉄道構造物	
庭瀬一仁…54-3-253	2.1 北海道新幹線建設に伴う津軽海峡線の耐震補強設計	
日本建築学会荷重指針の意義と 2015 年改定の概要	と施工石川大輔・高木智章・	
高田 毅士…54 - 4 - 339	下山勝彦…54 - 1 - 35	
放射性廃棄物処分施設におけるセメント系材料の溶脱モデルと	2.2 つくばエクスプレス線、車両基地入出庫線複線化工事	
次解亦質評価		

Vol. 54, No. 12, 2016. 12

2.3 線路直下地下切替工法 (STRUM) による鉄道営業線

溶解変質評価 …… 辻 幸和・半井健一郎・

芳賀和子・坂本浩幸…54- 4- 345

	の地下化工事(東急東横線渋谷駅~代官山駅)	1.2 建築	楽の事例
	高田久夫・鈴木隆文・	1. 2. 1	ポスト NewRC(超高強度 RC 構造)
	丸山明紀…54-1-47		
2.4	新橋駅改良工事におけるレンガアーチ高架橋改築の	1. 2. 2	コンクリート充填鋼管構造の研究開発および建
	設計・施工		物適用 福元 敏之…54 - 5 - 464
	松田聡美・渡部太一郎・	1. 2. 3	オフィスビルに採用されたコンクリート技術の
	有光 武・菅野貴浩…54-1-53		変遷・発展 小室 努…54 - 5 - 471
2.5	東京メトロ有楽町線 小竹向原 – 千川間の平面交差解	1. 2. 4	柱梁接合部のプレキャスト化による超短工期施
	消工事坂田 聡・中村守男・		工増田安彦・藤生直人・
	大槻あや・岩橋公男…54 - 1 - 60		杉本訓祥…54 - 5 - 477
3. 建	築物	1 2 5	耐震補強技術 毛井 崇博…54 - 5 - 483
	建築材料分野における建物長期利用のためのリニュー		部材主筋のプレート定着と機械式鉄筋継手
0. 1	アル計画の考え方と普及への課題	1. 2. 0	
	·······土屋 直子···54 - 1 - 65	2 **オ**斗・	施工分野における技術開発
3 2	集合住宅のリニューアル手法と実施事例		メント・混和剤分野の事例
0. 2	田沼毅彦·牛山美緒…54 - 1 - 71		エコセメント一資源循環型社会の構築の一翼を
2 2	EKIMISE (エキミセ) 耐震改修~歴史的鉄道ターミ	2. 1. 1	担う革新的技術—
0. 0	ナルビルのリニューアル~		田中敏嗣・平尾 宙・
			星野清一···54 - 5 - 496
2 1	大規模リゾートホテルの居ながらできる耐震補強一高	2.1.2	生 1
5. 4	強度耐震補強ブロック工法―	2. 1. 2	の開発 名和 豊春…54 - 5 - 502
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2.1.2	JIS A 6204 コンクリート用化学混和剤の変遷~平
		2. 1. 3	
4 5#	横並 努・岡本森廣…54 - 1 - 83		成における各種混和剤の技術進歩~
	湾構造物		
4. 1	岸壁のリニューアル技術~重力式岸壁の増深工法の	0.0 1	森本孝敏…54 - 5 - 508
4.0	開発~・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2.2 土才	
4. 2	港湾のコンクリート構造物の転用計画~防波堤等ケー	2. 2. 1	超高強度繊維補強コンクリート(UFC/UHPFRC)
	ソンを例として 石本 健治…54-1-93	0.00	
	下水道構造物	2. 2. 2	トンネル覆工の課題克服に向けた中流動覆工コ
5. 1	東京水道施設整備マスタープランにおける浄水場更		ンクリートの開発
	新への取組 柿沼 誠…54 - 1 - 99		·····································
5. 2	下水道管きょのアセットマネジメント~再構築の平	2. 2. 3	海水練りコンクリート
	準化に資する長寿命化技術の開発~		竹田宣典・大即信明…54 - 5 - 525
		2. 2. 4	長寿命化を実現する炭酸化養生コンクリート技術
	岩佐行利…54 - 1 - 105		横関康祐・渡邉賢三・
5. 3	上下水道管路・施設における改築・修繕技術		取違 剛・関 健吾…54 - 5 - 531
		2. 2. 5	高流動コンクリートーモルタル中の固体粒子間摩
	ニューアルに使用される材料		擦を緩和して骨材量を確保する技術の変遷
6. 1	塩素固定化材を用いた断面修復工法		
		2. 2. 6	ポーラスコンクリート
6. 2	急速施工を可能にする速硬コンクリート		岡本享久・中 新弥…54- 5- 542
	郭 度連…54 - 1 - 122	2. 2. 7	フライアッシュの高強度吹付けコンクリートへの
平成の	コンクリート技術開発		適用秋山康之・中村昭男・
1. 構	造・工法分野における技術開発		佐藤正俊・櫻井友彰…54- 5- 548
1.1	土木の事例	2.3 建築	
1.	1.1 エクストラドーズド橋の誕生から発展, そしてこ	2. 3. 1	超高強度コンクリート
	れから 春日 昭夫…54 - 5 - 430		小島 正朗…54-5-554
1.	1.2 波形鋼板ウェブ PC 橋の技術開発	2. 3. 2	コンクリート充填鋼管構造用コンクリートの技術の
			変遷依田和久・全 振煥…54-5-559
1.	1.3 鉄道 PC エクストラドーズド橋の技術的特徴	2. 3. 3	高靭性コンクリート (HPFRCC)
	曽我部正道・玉井真一・		閑田徹志・坂田 昇・
	後藤恵一…54 - 5 - 442		林 大介・橋本 学…54-5-565
1.	1.4 施工空間に制約のある鉄道 RC 高架橋柱の耐震補	2. 3. 4	超低収縮コンクリート
	強工法…齋藤祐樹・大郷貴之…54- 5- 448		辻埜 真人…54 - 5 - 572

1218 コンクリート工学

2.3.5 環境に配慮した低炭素型のコンクリート

……………小林 利充…54 - 5 - 578

1.1.5 機械式定着鉄筋 …… 石橋 忠良…54-5-453

3. 平成のこれまで表面が見って、そしてこれから	3.1 暴棒管理のこれまでとこれから、十条分・ンフラを別		
□	□		
3.2 平成の時代のコンクリート技術の進歩と今後の展望	3.2 平成の時代のコンクリート技術の進歩と今後の展望		
### 第一条	### 第一名 5 - 884		
3.3 平成の時代を振り返って、そしてこれから	3.3 平成の時代を振り返って、そしてこれから #**		
 ・ 表校 学・少4-5-5-886 → 3.4 半成という時代と足で達納、そしてこれからいからりまして表示に向けてです。 1. が年における弾コンクリートの複合技術 1. が年における弾コンクリートの複合技術 1. が年における弾コンクリートを皮体販の動向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 ・ 東校 学・号4-5-588 ○ 3.4 半成という時代とRC 連絡物、そしてにれから (福田寿彦・54-9-920 (福田寿彦・54-9-920 (福田寿彦・54-9-920 (福田寿彦・54-9-920 (福田寿彦・54-9-920 (福田寿彦・54-9-920 (福田寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-920 (祖野寿彦・54-9-9-920 (祖野寿彦・54-9-9-920 (祖野寿彦・54-9-9-920 (祖野寿彦・54-9-9-920 (祖野寿彦・74-9-9-820 (祖野寿彦・74-9-820 (祖野寿彦・74-9-9-820 (祖野寿彦・74-9-820 (祖野寿彦・74-9-9-820 (祖野寿彦・74-9-9-820 (祖野寿彦・74-9-820 (祖野寿彦・74-9-9-820 (祖野寿	7,000	
●コンクリートと異分野との聴き合類が、地盤から合成化学、 そして未来に向けて~ 1. 銅とコンクリートで放き気候の動向	●コンクリートと異分野との融合 一類・北部から 5 - 588	,	
●コンクリートと異分野との融合〜御材・地盤から含成化学、 そして未来に向けて~ 1. 領とコンクリートの始合技術 1.1 近年における剣コンクリート合成体版の動向	●コンクリートと異分野との融合~個材・地盤から含成化学、 そして未来に向けて~ 1. 領とコンクリートの始合核物 1. 1 左竿における刺コンクリート合成体版の動向		研究山内 匡・清宮 理・
 ●コンクリートと異分野との融合〜領林・地盤から合成化学、そして来来に向けて~ ・ 鋼とコンクリートを検査を摘 1.1 近年における風コンクリート合成支配の動向。	 ●コンクリートと異分野との融合へ傾材・整盤から合成化学、そして来来に向けて~ 1.1 逆年における親コンクリートを放来版の動向		横田季彦…54 - 9 - 920
 表して未来に向けて~ 末春 方志・54・9・925 1. 選生 コンクリートの複合技術 1. 選生 はおる第コンクリート合成味及の動向	 表して未来に向けて~ 本義 寿志…与4 - 9 - 926 1. 資産に対する第コンクリート合成年度の動向 端山助印子、大山 理…54 - 9 - 828 1. 2 コンクリート充現2至飼管構造を有する構即の耐役性能 が再速に 作中点性 54 - 9 - 834 1. 3 都市開船トンネルに対ける複合件造プレキマスト部材の設計は 理由な介・信本 勇 森田大介・平 陽氏…54 - 9 - 840 1. 4 報管巻き PHC 校 開発と適用 加倉井正昭 54 - 9 - 840 1. 5 蔣文保派表院 (全株子人、松田方能 54 - 9 - 840 1. 5 蔣文保派表院 (全株子人、松田方能 54 - 9 - 840 1. 6 頭付きスタンドを用いた文承取り換え技術 担当企业 水学検之 合田裕 - 小泉貴並 54 - 9 - 985 1. 6 頭付きスタンドを用いた文承取り換え技術 加倉井正昭 54 - 9 - 889 1. 7 RC 造高業権上に付づする 8 造板を上家の地震時候対		
1.	1. 銀とコンクリートの複合技術	●コンクリートと異分野との融合〜鋼材・地盤から合成化学,	
1.1 五年における剣コンクリート合成床版の動向 性能	1.1 五年における剣コンクリート合成体版の動向 性能	そして未来に向けて~	
1.2 コンクリートが収立 無対管構造を有する精脚の耐緩性性	1.2 コンクリート た頃 工 新智 常	1. 鋼とコンクリートの複合技術	4.2 水硬性樹脂と連続繊維シートで補強した RC 柱の耐震
1.2 コンクリート充填2重鋼管構造を有する橋脚の耐震性能・・・・	1.2 コンクリート充填2重額管構造を有する橋脚の割實性能・・・・・	1.1 近年における鋼コンクリート合成床版の動向	性能鈴木将充・笠倉亮太・
性能・・・・・	技術・	藤山知加子・大山 理…54- 9- 828	加藤佳孝・牧 剛史…54-9-930
	### 1.3 都市開削トンネルにおける複食権造プレキャスト部材の設計施工 … 阿島広介・特本 勇・	1.2 コンクリート充填2重鋼管構造を有する橋脚の耐震	4.3 超高強度繊維補強コンクリート(UFC)の耐火性向
	1.3 都市関別トンネルにおける複合構造プレキャスト部材の設計版工・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	性能 杉浦邦征 · 橋本国太郎 ·	上技術小澤満津雄…54-9-936
#	議計施工 … 西嶋安介・橋本 勇・ 森田大介・平 陽長…54-9-845 1.4 鋼管巻き PHC 杭の開発と適用 加倉井正昭…54-9-845 1.5 腐食促進試験に歩ぐ了鋼部材のコンクリート境界部 における経路高度を参助の基礎的検討 … 担居産品 細見直史…54-9-852 1.6 頭付きスタッドを用いた支承取り換え技術 … 一	加藤真志・中西克佳…54- 9- 834	4.4 長期暴露試験による含浸材の耐久性評価
## ## ## ## ## ## ## ## ## ## ## ## ##	## 田大介・平 陽兵・54 - 9 - 840 1.4 鋼管巻き PHC 杭の開発と適用	1.3 都市開削トンネルにおける複合構造プレキャスト部材の	······· 佐々木崇人・松田芳範···54 - 9- 942
1.4 顕智巻き PHC 杭の開発と適用	1.4 鋼管巻き PHC 杭の開発と適用	設計施工 ·····西嶋宏介·橋本 勇·	4.5 スラブ軌道てん充層(CA モルタル)の圧縮疲労特性
1.5 腐食促進試験に基づく網路材のコンクリート境界部 における経時腐食等動の基礎的検討 における経時腐食等動の基礎的検討 における経時腐食等動の基礎的検討 提築物の耐震改修工法	1.5 腐食促進試験に基づく預部材のコンクリート境界部 における経時腐食挙動の基礎的検討	森田大介・平 陽兵…54-9-840	高橋貴蔵・桃谷尚嗣・
1.5 腐食促進試験に基づく飼部材のコンクリート境界部 における経時腐食等動の基礎的検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1.5 腐食促進試験に基づく飼部材のコンクリート境界部 における経時病食姿勢の基礎的検討	1.4 鋼管巻き PHC 杭の開発と適用	谷川 光…54-9-948
における経時腐食挙動の基礎的検討	における経時腐食挙動の基礎的検討 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		5. これからのコンクリートと異分野の繋がり
1.6 頭付きスタッドを用いた支承取り換え技術	1.6 頭付きスタッドを用いた支承取り換え技術	1.5 腐食促進試験に基づく鋼部材のコンクリート境界部	5.1 木質材料 (CLT, LVL) を耐震壁として用いた RC 造
1.6 頭付きスタッドを用いた支承取り換え技術	1.6 頭付きスタッドを用いた支承取り換え技術	における経時腐食挙動の基礎的検討	建築物の耐震改修工法
 加藤卓也・松井繁之・合田谷・・小泉貴宏・54 - 9 - 859 1.7 RC 造高架橋上に付帯する S 造旅名上家の地震時応答特性山田聖治・清水克容・三木広志・54 - 9 - 865 2. 地盤とコンクリート構造物 2.1 UFC 製品を活用した新しい補強土工法 一部経費所である 市場 にび藤裕久・ 西尾信子・小高猛司・54 - 9 - 871 2.2 線路直下を長距離横断する非開削工法によるボックス カルバートの施工(IR 東海道線吹田貨物専用道路 Bv 工事)・・・・・不京	 加藤卓也・松井號之・合田谷一・小泉貴宏・54 9 859 1.7 RC 造高架橋上に付帯する S 造旅名上家の地震時応答特性山田聖治・清水克将・三木広志・54 9 865 2. 地盤とコンクリート構造物 2.1 UFC 製品を活用した新しい補強上工法 一部尾信子・小海猛司・54 9 871 2.2 線路直下を長距離横断する非開削工法によるボックス カルバートの施工 (IR 東海道線吹田貨物専用道路 Bv 工事) …不京 稔・相原修司・54 9 876 2.3 中央環状品川線シールド工事における合成 (HB) セグメントの適用	貝沼重信・細見直史…54- 9- 852	福原武史・栗原嵩明・
(1.7 RC 造高架橋上に付帯するS 造旅客上家の地震時応答 特性山田聖治・清水克将・三木広志…54 - 9 - 865 を持性山田聖治・清水克将・三木広志…54 - 9 - 865 を担盤とコンクリート構造物	1.7 RC 造高架橋上に付帯するS 造旅客上家の地震時応答 特性山田聖治・清水克将・ 三木広志…54-9-865 2. 地盤とコンクリート構造物	1.6 頭付きスタッドを用いた支承取り換え技術	須賀順子…54-9-953
1.7 RC 遠高架橋上に付帯する S 造旅客上家の地震時応答 特性山田聖治・清水克将・ 三木広志…54 - 9 - 865 2. 地盤とコンクリート構造物 2.1 UFC 製品や RC 製品を活用した新しい補強土工法 一 一 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	1.7 RC 遠高架橋上に付帯する S 造旅客上家の地震時応答 特性山田聖治・清水克将・ 三木広志…54-9-865 2. 地盤とコンクリート構造物 2.1 UFC 製品を RC 製品を活用した新しい補強土工法 一部 原程信行・小高猛司…54-9-871 2.2 線路直下を長距離横断する非開削工法によるボックス カルバートの施工 (JR 東海道線吹田貨物専用道路 Bv 工事)不京 稔・相原修司…54-9-876 2.3 中央環状品川線シールド工事における合成 (HB) セグメントの適用 一部 発し民置された RC 構造物の地盤と の相互作用と損傷の評価 ――――――――――――――――――――――――――――――――――――	······加藤卓也·松井繁之·	5.2 パルスパワーによるコンクリート最終処分の減容化
特性	特性	合田裕一・小泉貴宏…54- 9- 859	重石光弘・浪平隆男…54-9-959
三木広志…54 - 9 - 865 2.1 世盤とコンクリート構造物 PAREEK Sanjay・荒木慶54 - 9 - 965 2.1 UFC 製品や RC 製品を活用した新しい補強土工法 一個に相心・武藤裕久・ 画屋信行・小高猛司…54 - 9 - 871 2.2 線路直下を長距離横断する非開削工法によるボックス カルバトトの施工(JR 東海道線吹田貨物専用道路 Bv 工事)不京 稔・相原修司…54 - 9 - 876 2.3 中央環状品川線シールド工事における合成(HB)セグメントの適用 場面隆正・ 場理化学的解釈に基づく電気化学的計測手法の体系化 場理との解互作用と損傷の評価 小流性上配置された RC 構造物の地盤と の相互作用と損傷の評価 小穴坑祖…54 - 9 - 883 計測手法の体系化研究委員会…54 - 2 - 156 橋梁の部材面における付着塩分量の違いを考慮したコンクリートの浸透塩分量の評価 上原子晶久・富山 潤、穴穴拓也…54 - 9 - 885 流井和喜・羽渕貴士…54 - 2 - 164 あと施工アンカーにおけるび割れの影響試験について 上原子晶久・富山 潤、	三木広志…54 - 9 - 865 2.1 世盤とコンクリート構造物 PAREEK Sanjay・荒木慶54 - 9 - 965 2.1 UFC 製品を RC 製品を活用した新しい補強土工法 一個に信行・小高猛司…54 - 9 - 871 2.2 線路直下を長距離横断する非開削工法によるボックス カルバトトの施工(JR 東海道線吹田貨物専用道路 Bv 工事)不京 稔・相原修司…54 - 9 - 876 2.3 中央環状品川線シールド工事における合成(HB)セグメントの適用 一級に関西である 中央環状品川線シールド工事における合成(HB)セグメントの適用 一級による断層上に配置された RC 構造物の地盤と の相互作用と損傷の評価 一級による断層上に配置された RC 構造物の地盤と の相互作用と損傷の評価 一次吹折也…54 - 9 - 883 計測手法の体系化研究委員会…54 - 2 - 156 橋梁の部材面における付着塩分量の違いを考慮したコンクリートの浸透塩分量の評価 一級手種・売出を持ていたで、 一級手種・一般手種・一般手種・一般手種・一般手種・一般手種・一般手種・一般手種・一般	1.7 RC 造高架橋上に付帯する S 造旅客上家の地震時応答	5.3 放射線遮蔽コンクリートのリスク評価体系構築を目
2. 地盤とコンクリート構造物 PAREEK Sanjay・荒木慶一…54 - 9 - 965 2.1 UFC 製品や RC 製品を活用した新しい補強土工法 5.4 宇宙とコンクリートへ月面基地建設へ 一個尾信行・小高猛司…54 - 9 - 871 万クニカルレポート 2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工 (JR 東海道線吹田貨物専用道路Bv工事) …不京 稔・相原修司…54 - 9 - 876 7クメントの適用 2.3 中央環状品川線シールド工事における合成 (HB) セグメントの適用 中央環状品川線シールド工事における合成 (HB) セグメントの適用 神理化学的解釈に基づく電気化学的計測手法の体系化 小型化学的解釈に基づく電気化学的計測手法の体系化 小型化学的解釈に基づく電気化学的計測手法の体系化 小型化学的解釈に基づく電気化学的計測手法の体系化 小型化学的解釈に基づく電気化学的計測手法の体系化 小型化学的解釈に基づく電気化学的計算を強いを考慮したコンクリートへの浸透塩分量の詳価 ・ 上原子晶久・富山 調 ・ 大の浸透塩分量の詳価 ・ 上原子晶久・富山 調 ・ 大学新和喜・羽渕貴士…54 - 2 - 164 2.5 鋼コンクリート複合杭を用いた結後が、	2. 地盤とコンクリート構造物 PAREEK Sanjay・荒木慶一…54 - 9 - 965 2.1 UFC 製品や RC 製品を活用した新しい補強土工法 5.4 宇宙とコンクリート~月面基地建設~ 一方の屋信行・小高猛司…54 - 9 - 871 7クニカルレポート 2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR 東海道線吹田貨物専用道路Bv工事)…不京 稔・相原修司…54 - 9 - 876 7クニカルレポート 2.3 中央環状品川線シールド工事における合成(HB)セクメントの適用 中央環状品川線シールド工事における合成(HB)セクメントの適用 期端康夫・山岸隆典…54 - 2 - 149 がメントの適用 物理化学的解釈に基づく電気化学的計測手法の体系化の発生の体系化研究委員会…54 - 2 - 156 2.4 FEMによる断層上に配置された RC 構造物の地盤との相互作用と損傷の評価 物理化学的解釈に基づく電気化学的計測手法の体系化研究委員会…54 - 2 - 156 6機梁の部材面における付着塩分量の違いを考慮したコンクリートへの浸透塩分量の評価 上原子晶久・富山 潤・	特性山田聖治·清水克将·	指した基礎研究
2.1 UFC 製品や RC 製品を活用した新しい補強土工法	2.1 UFC 製品や RC 製品を活用した新しい補強土工法	三木広志…54-9-865	鈴木裕介・木村健一・
 一四尾信行・小高猛司・・・54 - 9 - 871 2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR 東海道線吹田貨物専用道路Bv 工事)・・・・不京 稔・相原修司・・・54 - 9 - 876 2.3 中央環状品川線シールド工事における合成 (HB) セグメントの適用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 一四尾信行・小高猛司・・54 - 9 - 871 2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR 東海道線吹田貨物専用道路Bv 工事)・・・・・不京 稔・相原修司・・54 - 9 - 876 2.3 中央環状品川線シールド工事における合成 (HB) セグメントの適用・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2. 地盤とコンクリート構造物	PAREEK Sanjay・荒木慶一…54 - 9- 965
西尾信行・小高猛司…54-9-871 フタニカルレポート 2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR 東海道線吹田貨物専用道路Bv 工事)不京 稔・相原修司…54-9-876 2.3 中央環状品川線シールド工事における合成(HB)セグメントの適用	西尾信行・小南猛司・・・54 - 9 - 871 2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR 東海道線吹田貨物専用道路Bv 工事)・・・・不京 稔・相原修司・・・54 - 9 - 876 2.3 中央環状品川線シールド工事における合成(HB)セグメントの適用	2.1 UFC 製品や RC 製品を活用した新しい補強土工法	5.4 宇宙とコンクリート~月面基地建設~
2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR 東海道線吹田貨物専用道路Bv 工事)不京 稔・相原修司…54 - 9 - 876 2.3 中央環状品川線シールド工事における合成(HB)セグメントの適用	2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR 東海道線吹田貨物専用道路Bv 工事)不京 稔・相原修司…54 - 9 - 876 2.3 中央環状品川線シールド工事における合成(HB)セグメントの適用	桐山和也・武藤裕久・	齊藤亮介・鵜山尚大…54- 9- 971
2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR 東海道線吹田貨物専用道路Bv 工事)…・不京 稔・相原修司…54 - 9 - 876 2.3 中央環状品川線シールド工事における合成 (HB) セグメントの適用	2.2 線路直下を長距離横断する非開削工法によるボックスカルバートの施工(JR東海道線吹田貨物専用道路Bv工事)不京 稔・相原修司…54 - 9 - 876 2.3 中央環状品川線シールド工事における合成(HB)セグメントの適用	西尾信行・小髙猛司…54- 9- 871	二九二十川.1.+° L
Bv 工事) … 不京 稔・相原修司 … 54 - 9 - 876 2.3 中央環状品川線シールド工事における合成 (HB) セ グメントの適用 … 一	Bv 工事)不京 稔・相原修司…54 - 9 - 876 2.3 中央環状品川線シールド工事における合成 (HB) セ グメントの適用	2.2 線路直下を長距離横断する非開削工法によるボックス	ノノニカルレホート
2.3 中央環状品川線シールド工事における合成 (HB) セ	2.3 中央環状品川線シールド工事における合成 (HB) セ	カルバートの施工(JR 東海道線吹田貨物専用道路	都市鉄道のカルバートトンネルを対象とした断面修復工法の開
グメントの適用 物理化学的解釈に基づく電気化学的計測手法の体系化 谷口 敦・福田隆正・堀口賢一…54 - 9 - 883 計測手法の体系化研究委員会…54 - 2 - 156 2.4 FEM による断層上に配置された RC 構造物の地盤との相互作用と損傷の評価 情梁の部材面における付着塩分量の違いを考慮したコンクリートへの浸透塩分量の違いを考慮したコンクリートへの浸透塩分量の違いを考慮したコンクリートへの浸透塩分量の評価 2.5 鋼コンクリート複合杭を用いた橋梁拡幅部既設杭基礎の耐震補強…茂呂拓実・杉山裕樹・糸川智章…54 - 9 - 895 荒井和喜・羽渕貴士…54 - 2 - 164 2.6 既製コンクリート杭の酸劣化抵抗性の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	グメントの適用 物理化学的解釈に基づく電気化学的計測手法の体系化 谷口 敦・福田隆正・ 堀口賢一…54 - 9 - 883 計測手法の体系化研究委員会…54 - 2 - 156 2.4 FEM による断層上に配置された RC 構造物の地盤との相互作用と損傷の評価 米澤健次・渡辺伸和・ 穴吹拓也…54 - 9 - 889 情梁の部材面における付着塩分量の違いを考慮したコンクリートへの浸透塩分量の評価 上原子晶久・富山 潤・ 売井和喜・羽渕貴士…54 - 2 - 164 2.5 鋼コンクリート複合杭を用いた橋梁拡幅部既設杭基礎の耐震補強…茂呂拓実・杉山裕樹・ の耐震補強…茂呂拓実・杉山裕樹・ 糸川智章…54 - 9 - 895 売井主一・西田宏司・ ・ ・ ・ ・ ・ ・ ・ ・ 市未圭一・西田宏司・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	Bv 工事)不京 稔・相原修司…54- 9- 876	発と展開平間昭信・福井賢一郎・
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	***********************************	2.3 中央環状品川線シールド工事における合成 (HB) セ	川端康夫・山岸隆典…54 - 2 - 149
#口賢一…54-9-883 計測手法の体系化研究委員会…54-2-156 2.4 FEMによる断層上に配置された RC 構造物の地盤との相互作用と損傷の評価米澤健次・渡辺伸和・ 穴吹拓也…54-9-889 荒井和喜・羽渕貴士…54-2-164 2.5 鋼コンクリート複合杭を用いた橋梁拡幅部既設杭基礎の耐震補強…茂呂拓実・杉山裕樹・ 糸川智章…54-9-895 2.6 既製コンクリート杭の酸劣化抵抗性の検討辻大二郎・小林利充・ 陣内 浩・鹿毛忠継…54-9-901 3. 産業副産物・未利用資源を用いたコンクリート 3.1 積雪寒冷地におけるコンクリート用混和材としての 計測手法の体系化研究委員会…54-2-156 橋梁の部材面における付着塩分量の違いを考慮したコンクリートへの浸透塩分量の評価上原子晶久・富山 潤・ 売井和喜・羽渕貴士…54-2-164 あと施工アンカーにおけるひび割れの影響試験について青木圭一・西田宏司・ 前田晴人・石原力也…54-2-170 接着系あと施工アンカーの耐久性に関する評価方法の検討 、	堀口賢一…54 - 9 - 883 計測手法の体系化研究委員会…54 - 2 - 156 2.4 FEM による断層上に配置された RC 構造物の地盤との相互作用と損傷の評価	グメントの適用	物理化学的解釈に基づく電気化学的計測手法の体系化
2.4 FEM による断層上に配置された RC 構造物の地盤との相互作用と損傷の評価 橋梁の部材面における付着塩分量の違いを考慮したコンクリートへの浸透塩分量の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2.4 FEM による断層上に配置された RC 構造物の地盤との相互作用と損傷の評価 橋梁の部材面における付着塩分量の違いを考慮したコンクリートへの浸透塩分量の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	谷口 敦・福田隆正・	物理化学的解釈に基づく電気化学的
の相互作用と損傷の評価	の相互作用と損傷の評価 トへの浸透塩分量の評価 上原子晶久・富山 潤・	堀口賢一…54- 9- 883	計測手法の体系化研究委員会…54-2-156
 ※ 大学研究棟におけるコンクリート視音が、表利用資源を用いたコンクリート 3. 産業副産物・未利用資源を用いたコンクリート視記材としての ※ 決辺伸和・	 ※ 大学研究棟におけるコンクリート開混和材としての ※ 大学研究棟次・渡辺伸和・	2.4 FEM による断層上に配置された RC 構造物の地盤と	橋梁の部材面における付着塩分量の違いを考慮したコンクリー
次吹拓也…54 - 9 - 889	大学研究棟におけるコンクリート開混和材としての 大学研究棟におけるコンクリート用混和材としての 大学研究棟におけるコンクリート用混和材としての 大学研究棟におけるコンクリート用混和材としての 売井和喜・羽渕貴士…54 - 2 - 164 あと施工アンカーにおけるひび割れの影響試験について 前田晴人・石原力也…54 - 2 - 170 接着系あと施工アンカーの耐久性に関する評価方法の検討 接着系あと施工アンカーの耐久性に関する評価方法の検討 大学研究棟における加速度センサーを用いた即時耐震性能評価 法の実証実験 日比野陽・楠 浩一・ 対の実証実験 日比野陽・楠 浩一・ 対の実証実験 日比野陽・楠 浩一・ 対の実証実験 一日比野陽・楠 浩一・ 対の実証実験 一日比野陽・楠 浩一・ 対の実証実験 一日比野陽・楠 浩一・ 対の実証実験 一日におけるコンクリート 大学研究棟における加速度センサーを用いた即時耐震性能評価 大学研究棟における加速度センサーを用いた即時耐震性能評価 大学研究棟における加速度センサーを用いた即時耐震性能評価 大学研究棟における加速度センサーを用いた即時耐震性能評価 大学研究棟における加速度・ 大学研究権における加速度・ 大学研究権に対する 大学研究	の相互作用と損傷の評価	トへの浸透塩分量の評価
2.5 鋼コンクリート複合杭を用いた橋梁拡幅部既設杭基礎の耐震補強…茂呂拓実・杉山裕樹・糸川智章…54 - 9 - 895 あと施工アンカーにおけるひび割れの影響試験について・西田宏司・新田晴人・石原力也…54 - 2 - 170 2.6 既製コンクリート杭の酸劣化抵抗性の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2.5 鋼コンクリート複合杭を用いた橋梁拡幅部既設杭基礎の耐震補強…茂呂拓実・杉山裕樹・糸川智章…54 - 9 - 895 あと施工アンカーにおけるひび割れの影響試験について・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一・一	米澤健次·渡辺伸和·	上原子晶久・富山 潤・
の耐震補強…茂呂拓実・杉山裕樹・ 糸川智章…54-9-895 2.6 既製コンクリート杭の酸劣化抵抗性の検討 辻大二郎・小林利充・ 陣内 浩・鹿毛忠継…54-9-901 3. 産業副産物・未利用資源を用いたコンクリート 3.1 積雪寒冷地におけるコンクリート用混和材としての	の耐震補強…茂呂拓実・杉山裕樹・ 糸川智章…54 - 9 - 895 2.6 既製コンクリート杭の酸劣化抵抗性の検討 辻大二郎・小林利充・ 陣内 浩・鹿毛忠継…54 - 9 - 901 3. 産業副産物・未利用資源を用いたコンクリート 3.1 積雪寒冷地におけるコンクリート用混和材としての	六 吹拓也⋯54 - 9 - 889	荒井和喜・羽渕貴士…54‐ 2‐ 164
*	*	2.5 鋼コンクリート複合杭を用いた橋梁拡幅部既設杭基礎	あと施工アンカーにおけるひび割れの影響試験について
2.6 既製コンクリート杭の酸劣化抵抗性の検討 接着系あと施工アンカーの耐久性に関する評価方法の検討 井口 重信…54-3-260 陣内 浩・鹿毛忠継…54-9-901 大学研究棟における加速度センサーを用いた即時耐震性能評価 3. 産業副産物・未利用資源を用いたコンクリート 3.1 積雪寒冷地におけるコンクリート用混和材としての 勃使川原正臣・荒木正之…54-3-268	2.6 既製コンクリート杭の酸劣化抵抗性の検討 接着系あと施工アンカーの耐久性に関する評価方法の検討 井口 重信…54 - 3 - 260 本学研究棟における加速度センサーを用いた即時耐震性能評価 法の実証実験 日比野陽・楠 浩一・ 動使川原正臣・荒木正之…54 - 3 - 268	の耐震補強…茂呂拓実・杉山裕樹・	青木圭一・西田宏司・
辻大二郎・小林利充・辻大二郎・小林利充・井口 重信…54 - 3 - 260障内 浩・鹿毛忠継…54 - 9 - 901大学研究棟における加速度センサーを用いた即時耐震性能評価 法の実証実験日比野陽・楠 浩一・3.1 積雪寒冷地におけるコンクリート用混和材としての・ 動使川原正臣・荒木正之…54 - 3 - 268	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	糸川智章…54- 9- 895	前田晴人・石原力也…54 - 2 - 170
	本・鹿毛忠継…54 - 9 - 901 大学研究棟における加速度センサーを用いた即時耐震性能評価 法の実証実験日比野陽・楠 浩一・ 3.1 積雪寒冷地におけるコンクリート用混和材としての 前、一・ 前、一・ 前、一・ 前、一・ 前、一・ 前・ 前・ 前・ 前・ 前・ 前・ 前・	2.6 既製コンクリート杭の酸劣化抵抗性の検討	接着系あと施工アンカーの耐久性に関する評価方法の検討
3. 産業副産物・未利用資源を用いたコンクリート 法の実証実験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3. 産業副産物・未利用資源を用いたコンクリート 法の実証実験日比野陽・楠 浩一・ 3.1 積雪寒冷地におけるコンクリート用混和材としての 動使川原正臣・荒木正之…54 - 3 - 268		
3.1 積雪寒冷地におけるコンクリート用混和材としての	3.1 積雪寒冷地におけるコンクリート用混和材としての		大学研究棟における加速度センサーを用いた即時耐震性能評価
		3. 産業副産物・未利用資源を用いたコンクリート	法の実証実験日比野陽・楠 浩一・
	高炉スラグ微粉末およびフライアッシュの利用 あと施工アンカーにおける長期持続引張荷重の影響試験につい	3.1 積雪寒冷地におけるコンクリート用混和材としての	
高炉スラグ微粉末およびフライアッシュの利用 あと施工アンカーにおける長期持続引張荷重の影響試験につい		高炉スラグ微粉末およびフライアッシュの利用	あと施工アンカーにおける長期持続引張荷重の影響試験につい

Vol. 54, No. 12, 2016. 12

て…………青木圭一・西田宏司・

………杉山隆文・井上真澄・

# b	土田田佐田 桑田井
花島 崇・高橋宗臣…54 - 3 - 275	
3体の鉄筋コンクリート梁による曲げひび割れの評価	近藤浩二郎…54 - 2 - 176
	高耐久プレテンションT桁橋の施工一東北横断自動車道釜石秋
アジテータ車のドラム内に設置したプローブによるコンクリート	田線「釜石道路」不動沢橋(仮称)―
品質の連続管理廣藤義和・毛利彰仁・	田中 実・鈴木辰幸・
宮本充也・山田雅裕…54- 4- 353	佐藤和徳・焼田 聡…54-3-290
福島第一原子力発電所 海水配管トレンチ内部閉塞工事に適用	ホワイトコンクリート化粧打放し建物の設計・施工
した充填材に関する検討	佐藤敏之・今川憲英・
柳井修司・日比康生・	猪田大介・高木俊輔…54 - 3 - 297
西郡一雅·佐藤圭太…54-4-362	モルタル吹付けによる既存耐震壁の耐震補強工法の実用化
あと施工アンカーにおける凍結融解の影響試験について	岸本 剛・古田英之・
青木圭一・西田宏司・	服部晃三・河野政典…54- 4- 381
前田晴人·高橋宗臣…54- 4- 371	超高耐久橋梁の開発と施工
ポーラスコンクリートの強度 - 空隙率関係に関する共通実験報告	緒方辰男・大城壮司・
性能設計対応型ポーラスコン	永元直樹・三加 崇…54 - 4 - 387
クリートの施工標準と品質保	福島第一原子力発電所 汚染水対策工事 海水配管トレンチとス
証体制の確立研究委員会…54-4-375	クリーンポンプ室の閉塞
炭酸化技術によるガラス繊維補強埋設型枠の耐久性向上	日比康生・柳井修司・
関 健吾・横関康祐・	西郡一雅·相馬 裕…54 - 6 - 628
向原敦史・藤木昭宏…54- 6- 607	高強度 PRC 版による空港におけるコンクリート舗装の急速補
電気防食を適用したコンクリート構造物の合理的な維持管理を	修技術小川 登…54 - 6 - 635
目指したモバイル型遠隔監視システム	東海北陸自動車道(白鳥 IC~飛騨清見 IC)4 車化事業における
	取り組み 山口岳思・丸山健太郎・
深川直利・石井浩司…54- 6- 613	早川慎治・岩立次郎…54 - 7 - 719
コンクリート構造物の温度ひび割れ幅に関する確率論的検討	吹付けポーラスコンクリートによるのり面保護技術
鋼繊維補強コンクリートを用いた省人化型接合部工法の実用化	松岡 智…54-8-777
石川裕次・西之園一樹・	大規模 LNG 地下式貯槽の構築における躯体の薄肉化に関する
飯田正憲・平林聖尊…54- 7- 694	設計と各コンクリート部材の施工―東邦ガス知多緑浜工場
世界最高強度を発現するコンクリートの開発ならびに更なる性	No. 3 タンク― 佐々木高士・林 孝弥・
能向上の可能性河野克哉・森香奈子・	前田敬一郎・桜井邦昭…54 - 10 - 1015
多田克彦·田中敏嗣…54 - 7 - 702	柱 PCa. RC - 梁 S 造と免震構造を組み合わせた構造システムの
各種の衝撃作用を受ける構造物の挙動評価に関する取り組み	構築福本晃治・慶 祐一・
	107,10
	福原武史・石川裕次…54 - 11 - 1111
	福原武史・石川裕次…54 - 11 - 1111 首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合およ	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化 花房禎三郎・寺内威夫・
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察根本浩史・田之倉誠・	首都高速 1 号羽田線における PC ゲルバー橋の連続化 花房禎三郎・寺内威夫・ 中村 充・高島秀和…54 - 11 - 1117
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察 ・・・・・・・・根本浩史・田之倉誠・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	首都高速 1 号羽田線における PC ゲルバー橋の連続化 花房禎三郎・寺内威夫・ 中村 充・高島秀和…54 - 11 - 1117 等々力陸上競技場メインスタンドの構造計画と大型サイト PCa
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察根本浩史・田之倉誠・ 橋本紳一郎・吉田匠吾…54 - 8 - 768 東北地方における加熱改質フライアッシュの取り組み	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察根本浩史・田之倉誠・ 橋本紳一郎・吉田匠吾…54 - 8 - 768 東北地方における加熱改質フライアッシュの取り組み	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察根本浩史・田之倉誠・ 橋本紳一郎・吉田匠吾…54-8-768 東北地方における加熱改質フライアッシュの取り組み	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察 根本浩史・田之倉誠・ 橋本紳一郎・吉田匠吾…54-8-768 東北地方における加熱改質フライアッシュの取り組み	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	 首都高速 1 号羽田線における PC ゲルバー橋の連続化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察 根本浩史・田之倉誠・ 橋本紳一郎・吉田匠吾…54-8-768 東北地方における加熱改質フライアッシュの取り組み	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化
2000 m を超える長距離圧送におけるコンクリートの配合および品質管理に関する一考察	首都高速 1 号羽田線における PC ゲルバー橋の連続化

1220 コンクリート工学

レビュー論文(文献調査委員会)		
レビュー論文 (文献調査委員会) 高層建築物に用いるメガ SRC 柱および構造形式に関する中国 の研究事例 ※ 文聰 **54 - 2 - 195 コンクリートの電気化学的特性の周波数依存性に関する研究事 例 ※ 福山 智子 **54 - 3 - 315 超吸水性ポリマーの新しいコンクリート用混和材としての適用 性に関する最新の研究動向 *** 五十嵐心一 **54 - 4 - 403 コンクリート塊から発生する微粉末の再利用に関する海外の研 究事例 ※ 蓮見 孝志 *** 54 - 6 - 658 構造物診断のためのコア試験における標本数の考え方		
超高層ビルに用いるメガ CFT 柱に関する中国の研究事例 李 文聰…54 - 10 - 1055 フレッシュコンクリートの施工性能評価手法に関する研究事例 田中 亮一…54 - 11 - 1129 コンクリート構造物の電気防食による副次的効果に関する研究事例 吉田 隆浩…54 - 12 - 1197		
さろん		
読書は人生を豊潤に 中村 洋行 54 - 2 - 211 橋梁の健康寿命を延ばすには 鈴木 基行 54 - 3 - 327 Boys Be Ambitious 名和 豊春 54 - 4 - 417 出会い 人とくるま 君島 健之 54 - 6 - 667 人口とまちづくりの話 濱中 聡生 54 - 7 - 740 スポーツから学んだ喜び 枝広 英俊 54 - 8 - 798 阪神大震災を思い出して 幸左 賢二 54 - 10 - 1073 朝鮮王朝のこと 坂井 悦郎 54 - 11 - 1144 大学生への人間力教育 古賀 一八 54 - 12 - 1206		
講座		
鉄筋コンクリート (RC) 造建築物の解体工法 ①鉄筋コンクリート造の解体工法の歴史・・・・・湯浅 昇・・54 - 2 - 189 鉄筋コンクリート (RC) 造建築物の解体工法 ② RC 造建築物等の解体工事の計画と施工・・・・・出野 政雄・・54 - 3 - 308 鉄筋コンクリート (RC) 造建築物の解体工法 ③低騒音解体工法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
海外だより		
香港に赴任して 澤田 巧…54 - 2 - 204		

ミャンマー:鉄道におけるコンクリート事情 ······松尾 伸之···54 - 3 - 323 フィリピン国 橋梁の現状と未来…… 長尾日出男…54-4-413 アメリカ ブラウン大学に滞在して… 酒井 雄也…54-6-665 環太平洋地域における耐震研究 ······小原 拓·田中広夢···54 - 7 - 738 タイ・バンコクに赴任して……… 鳴滝 康宏…54-8-796 ベトナムの建築研究機関について… 大西 智哲…54-10-1066 中華人民共和国上海市の 2008 年と今 (2016 年) ドイツ・アーヘン工科大学より …… 子田 康弘…54-12-1202 国際情報 第5回 建設材料に関する国際会議 (ConMat '15) ······小林孝一·山口明伸···54 - 2 - 206 10th Pacific Conference on Earthquake Engineering (PCEE) Ø 参加報告……掛 悟史…54 - 2 - 209 Third Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2015) 参加報告 ………中村 聡宏…54 - 3 - 325 第14回セメント化学国際会議の参加報告 ………依田侑也・齋藤 尚・ 辛 軍青・小山田哲也…54-4-415 ACI Spring 2016 Convention in Milwaukee 参加報告 RILEM TC-259 ISR 2016 meeting at Boulder 参加報告 Second International Conference on Concrete Sustainability (ICCS 16) in Madrid, Spain…… 田村 雅紀…54 - 11 - 1140 次世代を担うコンクリート材料・構造国際シンポジウム(Ikeda & Otsuki Symposium (IOS 2016)) 開催報告 ······岩波光保・宇治公隆··54 - 11 - 1142 第4回廃棄物とセメントの相互作用の機構およびモデル化に関 する国際ワークショップ参加報告 ………………………半井健一郎…54 - 12 - 1204 ニュース (一社)日本コンクリート診断士会(JCD)第3回業務体験発表 会の報告…… 奥田 由法…54-6-668 委員会報告 第 21 回 ISO/TC 71 総会報告 ······ISO/TC 71 対応国内委員会···54 - 6 - 652 支部だより 2015年度中部支部学生研修会報告 ······河辺伸二・伊藤洋介・ 中野晃徳…54-2-212 **TOPICS** 東海大学湘南校舎 研究実験館 設計:山田 守 東北の構造物-大正 12 年築造の排水樋管-

阿部幸雄·武田三弘···54 - 3 - 236

北海道科学大学体育館 HIT ARENA のデザイン

Vol. 54, No. 12, 2016. 12

佐原	※ 孝…54 − 4 − 336	コンクリート構造物の役割佐藤	政弘…54 - 2 - 215
山口県北西部「角島大橋」	, 01 1 000	診断士になって広がった世界 山口	
山口県土木建築部道道	路整備課…54-6-598	生コン工場における診断士大野	
JAXA 内之浦宇宙空間観測所 旧退避室		維持修繕工事の経験から思うこと… 松浦	
·····································		小さな決意表明 平	喜夫…54 - 3 - 329
明治神宮野球場 津村		同年代の構造物に親近感を覚える… 越野	
水天宮御造替麻生直木・		橋梁維持管理サイクルの高度化に向けて)
香川県庁舎東館 大			正司…54-4-419
女川原子力発電所 安全性向上工事の紹		究める,見極める 西村	
		コンクリート診断士試験を技術力の研鑽の	
		澤田	
コンクリート技士の	ページ	コンクリート診断士の使命赤澤	
自身のスキルアップのために 合木	林 純平…54-2-214	地区診断士会への参加 堺	理夫…54-6-671
さらなる高みを目指して 樫	下 峰治…54-2-214	向上心を錆びさせない正沢	弘之…54-6-671
コンクリートに関する知識向上のために	<u>.</u>	コンクリート診断士会のすすめ 小池	芳佳…54-6-671
	原 知哉…54-2-214	私なりのコンクリート診断士 小池	晶子…54-6-671
コンクリート技士取得の動機 佐藤	螓 大地…54- 2- 214	生産人口の減少するなかでの担い手の確伪	Ę.
若手の生コン技術者として西」	山 俊行…54-3-328	瀬原	洋一…54 - 7 - 742
コンクリート技術者としての環境配慮		社会基盤メンテナンスエキスパート養成講	
	∄ 涼…54 - 3 - 328	宮本	圭介…54 - 7 - 742
環境の変化 西[□ 裕之…54-3-328	コンクリート愛を胸に杉谷	茂…54 - 7 - 742
建設に携わる技術者として 新年	名 勉…54-3-328	コンクリートの町医者を目指し"日々研鑽	; "
技術者としての心の変化 村村	公 恵二…54- 4- 418	野村	肇…54 - 7 - 742
気持ちを新たにもう一度 黒海	睪 正美…54-4-418	コンクリート診断士を目指したきっかけ	
コンクリート技術者として中村	退 政範…54-4-418	宮地	稚奈…54-8-800
コンクリートとの出会い 近瀬	縢 剛…54 − 4 − 418	診断士の新米として思うこと 兵頭	学…54-8-800
生コンクリート輸送係として 畝木	本 昌子…54-6-670	コンクリート診断士との出会いと今後の指	項
コンクリートを扱う従事者すべての人か	*笑顔になれるように	松田	秀和…54-8-800
······································	武 和雄…54-6-670	自分を磨くことのできる資格 朝倉	光司…54-8-800
コンクリート技士を取ると決めた日… 鹿野	野 義行…54-6-670	コンクリート診断士を取得することの意味	Ř
技術者としての第一歩 大灯	田 裕志…54-6-670	平本	真也…54 - 10 - 1075
21-8-40 BB ·····	⊞ 信一…54-7-741	コンクリート診断士として深野	木博文…54 - 10 - 1075
コンクリート主任技士の重要性 政	岡 顕崇…54-7-741	寡黙に働く"我が子"への思い神農	誠…54 - 10 - 1075
お世話になったその日から・・・ … 林	憲之…54-7-741	コンクリート診断士として 田中	智行…54 - 10 - 1075
主任技士, 取ろう! 竹村		磨 く柳田	
コンクリート主任技士取得へのチャレン		高耐久性プレキャストコンクリート製品の	
中省			
資格取得を経て 光道		技術士への近道 桜田	道博…54 - 11 - 1146
今後の課題 芋		コンクリートの劣化予測技術への期待	
私のコンクリート技士 末			
生コン工場の品質サポーターとして…・大		診断士1年生 寺澤	
コンクリートの知識 尾		歴史あるコンクリートを診て 三木	
生コンの奥深さに触れて 酒ラ		診断士の活躍の場 谷口	勝…54 - 12 - 1208
異業種からコンクリート業界へ 佐恵		コンクリートの維持管理は「現場百遍」	
コンクリートと私の関わり 佐藤		大山	高輝···54 − 12 − 1208
悔しさと興味がきっかけ・・・ 佐藤		我が職場	
スタート地点とその先 大[I) da lab posturana) da la se per la se per la se	- 1 H == 3.6 A =H =1/m/
コンクリートに携わる 對っていたり		人と自然が調和した社会づくりを目指しま	
コンクリート主任技士を取得して…上		齋藤	
いつまでも学ぶことを忘れずに!… 鈴		フジコンサルタント㈱八島	
変わらないもの 木村		(株)平成生コンクリート 今野	
お客様への感謝 室[到 敦…54 − 12 − 1207	東北工業大学・建築学科構造系研究室とも	
コンクリート診断士の	カページ		則男…54-3-330
シャント マロシント 4-	6 才	(株)日本ピーエス 敦賀工場 花谷	
診断士として思うこと佐々		「さすが」と言われる会社を目指して トラ	
勤勉の大切さ能	豆口 心…04 - 4 - 410		元光…54 - 4 - 420

1222 コンクリート工学

54-3-245, 12-1154

お知らせ

新刊紹介

54-2-155, 7-724 · 736, 10-986 · 1044, 11-1090

その他

2015 4	F度「コンクリート技士試験」合格者	発表…54-2-217
2015 4		格者発表
		······ 54 - 2 - 226
2016 4		者発表
		54 - 10 - 1077
第 49	回 定時社員総会報告	54 - 8 - 802
[年次	大会報告]	
1.	コンクリート工学年次大会 2016(博	多)の概況
	佐藤	嘉昭…54-10-1028
2.	生コンセミナー「持続可能な生コンの	のために:生コンから
	物申す」武若耕司・小山	智幸・
	山口明伸・高巣	基幸二…54 - 10 - 1040
3.	特別講演会の概要 塩屋	晋一…54 - 10 - 1045
4.	コンクリート工学年次論文を査読し	て
	岸	利治…54 - 10 - 1047
5.	キング・オブ・コンクリート 2016	
	佐川	康貴…54-10-1050

本会記事

54-2-228, 4-421, 5-590, 7-744, 9-976, 10-1081, 12-1210

Vol. 54, No. 12, 2016. 12