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1. Introduction
For chemically prestressed concrete (CPC) beams using 
expansive concrete in reinforced concrete (RC) beams, 
the expansive strain from the chemical prestressing 
applied to the concrete and the chemical prestrain 
applied to the rebar varies greatly according to factors 
related to not only the concrete mix but also the rebar 
arrangement.
This paper reports experimental and analytical results 
for the expansive strain distributions and mechanical 
behaviors of CPC beams with T-shaped cross-sections 
and those with rectangular cross sections, each with 
different rebar arrangements and three different mix 
proportions. Mix proportions 0 and 1,1* are without 
and with expansive additive, respectively.
The paper received the Outstanding Paper Award from 
the Japan Prestressed Concrete Institute (JPCI) in 2021.

2. Outline of the Experiment
The beam specimens had either a T-shaped cross section 
(specimens TA–TF) or a rectangular cross section 
(specimens RA–RE), with names to distinguish rebar 
layouts of the specimens as shown in Fig. 1[1]. All rebar 
arrangements were vertically asymmetric, even in the 
specimens with rectangular cross sections. The specimen 
length was fixed at 1,200mm, and no stirrups were used. 
The loading tests were performed on concrete at 28 days 
of age. Two types of expansive concrete were used, with 
different unit contents of expansive additive, resulting 
in expansive strain of approximately 500 × 10 − 6 (mix 
proportion 1) and 900 × 10 − 6 (mix proportion 1*) at 
7 days of age, as measured using a uniaxial restraint 
device such as that specified in Annex B of JIS A 6202.

Fig. 1  T-section beams with different rebar layouts
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3. Methods for Estimating Expansive 
Strain and Flexural and Shearing 
Behaviors

The analysis to estimate the distributions of expansive 
strain and chemical prestress was performed based 
on the assumption that a constant amount of work 
is done by expansive concrete on the rebar acting as 
the restraint [2]. Flexural analysis was then performed 
using a layered model[1]. The diagonal crack initiation 
strength and shear compression fracture strength 
were calculated using the formulas specified in the 
Japan Society of Civil Engineers (JSCE) Standard 
Specifications for Concrete Structures, with a material 
coefficient of γb =  1.0.

4. Experimental Results and Analytical 
Values

(1) Distribution of Expansive Strain
Fig. 2 shows examples of the distribution of axial 
expansive strain for different nominal diameters of the 
lower-section rebar. For both T-section and rectangular 
cross-section specimens, the greater the content of 
reinforcement in the lower section, the greater the 
degree of restraint on concrete expansion and the 
smaller the expansive strain at that location.
For the amount of work done (U) in this expansive 
strain estimation, the analysis used the A-type method 
of uniaxially constrained expansive strain (JIS A 6202), 
and the estimated values shown by the dotted lines for 
both the T-sections and rectangular cross sections are 
nearly equal to the measured values.

(2) Tensile Strain of Reinforcement
Fig. 3 shows the relation between the amount of strain 
increase in the rebar and the external force moment. 
Comparing RB0 of the RC beams with RB1 of the 
CPC beams, the figure shows the calculated and 
experimental values for the lower rebar, and those 
values are in good agreement. The increase in strain 
in the lower rebar is reduced even after flexural cracks 
develop, with the extent of reduction corresponding 
to the chemical prestrain applied to the lower rebar. 
The flexural crack width can thus also be reduced in 
proportion to the increase in strain in the lower rebar.

(3) Loads of Flexural and Shearing Cracks
Initial flexural cracking occurs in the beam section 
with constant bending moment. Fig. 4 compares the 
experimental and calculated values for the flexural 
cracking initiation load. For both T-section and 
rectangular cross-section beams, introducing chemical 
prestress in the CPC beams with mix proportion 1 
increased the flexural cracking initiation load for both 
rebar configurations compared with the RC beams with 
mix proportion 0.
Flexural cracks developed in the shear span, followed 
by diagonal cracking in the direction of the load point. 
Fig. 5 shows the experimental and calculated values 

for the shear cracking initiation load. As in the case of 
the flexural cracking initiation load, applying chemical 
prestress in the beam’s axial direction increased the 
experimental values for the shear cracking initiation 
load in the CPC beams compared with RC beams. 
This suggests that the effect of applying chemical 
prestressing can be calculated by the formula in the 
JSCE Standard Specifications for Concrete Structures.

5. Conclusion
This paper reported for the first time the results of 
uniformly conducted experiments involving mainly 
varying the amounts of rebar allocated at the lower 
level. The experimental values agreed well with the 
values estimated based on the assumption of constant 
work done and those calculated from a layered model.
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Fig. 4  Comparison of flexural cracking initiation loads 
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Fig. 5  Shear cracking initiation loads in RC and CPC 
beams (mix proportion 0 or 1)
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