Risk-Based Evaluation of Existing Highway Bridges: Past, Present and Future

F. Michael Bartlett Dept. of Civil & Environmental Engineering University of Western Ontario London, Canada

f.m.bartlett@uwo.ca

Aging Bridge Inventory, Increasing Loads

Criteria Unchanged Since 1990

Presentation Objectives

- Existing Bridge Evaluation – Constant Risk Basis
- New Directions
 Quantify Warning

Factors that Provide Warning

- System Behaviour
 - S1 (Single Load Path), toS3 (Multiple Load Path)
- Element Behaviour
 - E1 (Brittle), to
 - E3 (Ductile)
- Inspection Classification
 - INSP1 (Uninspectable), to
 - INSP 3 (Evaluator inspects deficient members)

Impact: Concrete Arch Bridge

Consider

- Top Chord
- Floor Beam

Umpqua River Bridge, Reedsport, Oregon

Top Chord (Compression)

- System: S1

 single load path
- Element Behav.: E1
 Brittle
- Inspection: INSP2
 Routine
- Target β: 3.75

Floor Beam (Flexure)

- System: S2
 Not SLP
- Element Behav.: E3 – Ductile
- Inspection: INSP2
 Routine
- Target β: 3.00

Impact on Rating

• • • • •	-	
	Chord	Beam
Target β	3.75	3.00
Concrete DL	1.2 x 500	1.14 x 50
Asphalt DL	1.5 x 50	1.35 x 5
LL (incl DLA)	1.7 x 600	1.49 x 60
Factored Deman	d 1695	153
Factored Capaci	ty 1550	155
Result in	sufficient	ok

Economic Impact

- Short span elements including bridge floor systems susceptible to increased traffic loads.
- These elements tend to be ductile, readily inspected, and part of a multiple load path.
- Less stringent β allows them to be deemed adequate.
- Marked economic savings achieved.

Present: 2020 Design Truck?

Future: Quantify Warning

- 1. Deflection as a metric of warning
- 2. Computing deflection at imminent failure, Δ_t :
 - Cross section response
 - Application of moment-area method
- 3. Computing warning factor, W, given Δ_{t}/L

Shape Factor

• Shape Factor f = M_u/M_y

$$f = (1 - \omega/2\alpha_1) / (1 - k/3)$$

where w, the mechanical reinforcing ratio, = $A_s f_v / (b d f'_c)$

• Typically 1.01 < f <1.05 for ω < 0.3

Express Δ_t as Δ_t/L

- Common practical measure
- Can show $\Delta_{t/L} = \alpha \Delta_{t/}(\phi_y L^2)$

where
$$\alpha = \frac{\varepsilon_y}{(1-k)} \left(\frac{h}{d}\right) \frac{L}{h}$$

say (h/d) ~ 1/0.85 for a thin slab to \sim 1/0.95 for a deep beam

(L/h) from Deflection Control Limits

 ACI 318 & A23.3 provide maximum L/h limits that, if satisfied, do not require deflections to be checked.

Beam end	Span-to-depth ratio, L/h		Avg.
restraints	1-way Slab	Beam	α
Simple support	20	16	0.054
Cantilever	10	8	0.027
Fixed ends	28	21	0.073

Conclusions

- 1. Constant risk criteria in CHBDC require more safety for members with severe consequences of failure.
- 2. Bridge members that are sensitive to higher modern traffic loadings get a break.
- 3. Significant economies are achieved.

- 4. Deflection at imminent failure captures warning of failure.
- 5. Increased deflections for: – Ductile cross sections
 - Long plastic hinge lengths (load configurations matter!)
- 6. Redundancy is an inconsistent indicator of warning of failure.
- 7. Can rationally quantify warning factor as a continuous variable.

Acknowledgements

- Natural Sciences and Engineering Research Council of Canada
- American Concrete Institute
- Japan Concrete Institute
- Various academic and professional colleagues

