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Impact:
Concrete

+ System Behaviour Arch Bridge
— 81 (Single Load Path), to

— 83 (Multiple Load Path)
« Element Behaviour Consider

— E1 (Brittle), to * Top Chord
— E3 (Ductile)

Factors that Provide Warning

* Floor Beam

* Inspection Classification
— INSP1 (Uninspectable), to
— INSP 3 (Evaluator inspects deficient members)
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Reedsport, Oregon
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» Target B: 3.75
Target B: 3.00

Impact on Rating
Chord Beam

Economic Impact

EE—S—S—S—————_—_——— » Short span elements including
Target 3.75 3.00 bridge floor systems susceptible to
Concrete DL 1.2x500 1.14x50 increased traffic loads.

Asphalt DL 15x50 1.35x5 » These elements tend to be ductile,

LL (incl DLA) 1.7 x 600 1.49 x 60 readily inspected, and part of a
e R T multiple load path.

Factored beman = * Less stringent § allows them to be
Factored Capacity 1550 155 deemed adequate.

Result insufficient ok » Marked economic savings achieved.




Present: 2020 Design Truck?

Future: Quantify Warning

. Deflection as a metric of warning
. Computing deflection at imminent
failure, A;:
— Cross section response
— Application of moment-area method
. Computing warning factor, W, given
Code bigger, AJL
evaluation section
essentially unchanged.

Deflection = Warning Conventional Flexural Analysis
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Bilinear Idealization Shape Factor

* Shape Factor f = M,/M,
f=(1-w0/20,)/(1- k/3)

__ where w, the mechanical reinforcing
L ratio, = A f, | (b 7,)

Moment, M (kN.m)

+ Typically 1.01 < f <1.05 for ® < 0.3
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Curvature Ductility Factor, ¢,/¢,

Ductility Factor, ¢,/¢,

Mechanical Reinforcement Ratio, o

Plastic Hinge Length Varies

» Function of shear force in plastic
hinge region — and Shape Factor f
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Equation £/t = 1-1/f V1-1/f 1- 2/(3f)
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Moment Area Method

* Integrate
curvature
diagram
accounting for
plastic hinging
+ Get A;:
deflection at
incipient
failure
Curvature

Simply Supported Beams
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Express A; as AJL

+ Common practical measure
« Canshow AL =aA($L?)

(L/h) from Deflection Control

Limits

* ACI 318 & A23.3 provide maximum
L/h limits that, if satisfied, do not

require deflections to be checked.
&y <h> L
where «

traint 1- Slab _
say (h/d) ~ 1/0.85 for a thin slab to e

Cantlever | 10 | 8 [0027]

~ 1/0.95 for a deep beam

Beams with UDLs
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Conclusions

.-- 1. Constant risk criteria in CHBDC require
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more safety for members with severe
consequences of failure.
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. Bridge members that are sensitive to
higher modern traffic loadings get a
break.

. Significant economies are achieved.
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. Deflection at imminent failure
captures warning of failure.

. Increased deflections for:

— Ductile cross sections

— Long plastic hinge lengths (load
configurations matter!)

. Redundancy is an inconsistent
indicator of warning of failure.

. Can rationally quantify warning

factor as a continuous variable.
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