WG3 第1回会議資料:ベンチマーク計算準備状況 佐藤裕一

- ・ 中央スパンの要素サイズは 60mm角程度
- せい方向に8分割
- ・ 主筋を線材要素でモデル化, せん断補強筋
- ・ 付着要素(4節点接合要素)は主筋に沿って配置
- ・ 載荷梁を模した線材要素を用いて変位制御により載荷
- ・ 使用プログラム:FINAL

図1 要素分割と埋め込み鉄筋分布(DB808の場合)

図2 主筋と載荷梁(線材要素)

ひび割れ回転	固定ひび割れ,一要素あたり3軸9枚まで許容
テンションスティフニングモデル	出雲モデル
一軸圧縮曲線モデル	修正 Ahmad モデル
破壊基準	一軸圧縮強度維持
せん断伝達モデル	Al-Mahaidi モデル

表1 コンクリート材料モデル

付着のモデル化

4節点接合要素に付着応力~滑り関係モデルを使用。

包絡曲線は Elmorsi 型

Elmorsi,M., Kianoush,M.R. and Tso,W.K.: Modeling bond-slip deformations in reinforced concrete beam-column joints, Canadian Journal of Civil Engineering, V.27, pp.490-505, 2000. 付着強度_{*T*_{bu}} は AIJ 靱性指針に基づいて(1)~(7)式により算定。

$$\tau_{bu} = \tau_c + \tau_s \tag{MPa}$$

$$\tau_c = (0.085 \ b_i + 0.1) \sqrt{\sigma_B}$$
 (MPa) (2)

$$\tau_{s} = (54 + 45 N_{w} / N_{t}) (b_{si} + 1) p_{w}$$
 (MPa) for $b_{si} < b_{ci}$ (3)

$$= 36.5 \pi d_{bw}^{2} / (s_{w} d_{bt})$$
 (MPa) for $b_{si} > b_{ci}$ (4)

$$b_i = \min(b_{si}, b_{ci}) \tag{5}$$

$$b_{si} =$$
サイドスプリット型破壊係数 $= b / (N_t d_{bt}) - 1$ (6)

$$b_{ci}$$
 = コーナースプリット型波形係数 = $\sqrt{2} (d_{cw} + d_{cd} - d_{bt}) / d_{bt} - 1$ (7)

ここに

b =部材幅(mm); =主筋径 (mm); d_{bt} *d_{bw}* = せん断補強筋径 (mm); =主筋かぶり厚(せい方向, mm); d_{cd} =主筋かぶり厚(幅方向, mm); d_{cw} N_t =主筋本数; N_w = せん断補強筋本数; =せん断補強筋間隔(mm) S_W =コンクリート圧縮強度(MPa); $\sigma_{\!B}$

σB=30 MPa, pw=0%, pw=0.48%, pw=0.84%, pw=1.32%の時の付着応力~滑り関係を図3に示す。

図7 DB408 試算(完全付着,付着考慮)

図 9 DB808 試算(完全付着,付着考慮)

計算結果を表2に示す。

- FEM の耐力算定値はいずれも実験値を過小評価している。これはコンクリート破壊条件を
 1 軸圧縮強度で一定(横拘束効果を無視)としていることが原因である。今後,破壊条件
 を計算変数の一つとして検討する予定である。
- ・ 完全付着と付着考慮との間に明瞭な差異が認められる。
- ・ スパンの短い試験体の実験耐力は, AIJ 指針式と比べて高い。FEM においては支点・載荷 点の境界条件も含め,検討の必要がある。

試験体	スパン	コンクリ	せん断補	せん断耐力(kN)			
	2a	ート強度	強筋比	実験値	AIJ 靭性	FEM	FEM
	(mm)	σ _B (MPa)	p _w (%)		保証指針	完全付着	付着考慮
DB200	400	29.9	0.00	853	414	390	366
DB400	800	286.	0.00	632	272		
DB404	800	27.3	0.48	750	461		
DB408	800	28.9	0.84	804	551	336	292
DB600	1200	30.3	0.00	284	189		
DB604	1200	27.8	0.48	491	455		
DB608	1200	28.9	0.84	570	551	324	235
DB613	1200	27.0	1.32		607		
DB800	1600	29.3	0.00		141		
DB804	1600	26.9	0.48	416	456		
DB808	1600	29.3	0.84	440	529	283	200

表 2 耐力算定值